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h i g h l i g h t s

• Instrumental variable estimation using indirect inference (II).
• II performs better than 2SLS and Fuller LIML when the instruments are weak and/or numerous.
• Stochastic approximation allows more efficient computation of the II estimator.
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a b s t r a c t

This paper frames indirect inference bias correction as a stochastic root-finding problem and proposes a
computationally efficient method to solve it. The technique is applied to the many/weak instrument bias
in two-stage least squares estimation. Monte Carlo experiments suggest that the bias-corrected estimator
outperforms more common alternatives.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Theweak instrument problem in two-stage least squares (2SLS)
estimation has received considerable attention over the past few
years. This is warranted, since the estimator iswidely used, and be-
causewe know it can be severely biased in finite sampleswhen the
instruments are weak and/or numerous. Many researchers have
provided analytical expressions to characterize the weak instru-
ment bias (see, e.g., Hahn and Hausman, 2002; Chao and Swan-
son, 2005; Bun and Windmeijer, 2011), and others have assessed
the performance of 2SLS in small samples using Monte Carlo ex-
periments. Hahn et al. (2004), for example, found that alternative
estimation methods such as the Fuller (1977) modification of lim-
ited informationmaximum likelihood (LIML) can often outperform
2SLS.

Another solution which does not seem to have been the object
of study so far is to use indirect inference (II) for bias correction. In
this paper, I argue that the II approach holds considerable appeal
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because of its effectiveness, generality, and ease of implementa-
tion.1 Whereas explicit analytic expressions for the bias of 2SLS are
usually developed in the context of simple special cases, II relies on
simulations which can easily be tailored to more complex model
specifications.

Section 2 frames indirect inference bias correction as a
stochastic root-finding problem and suggests a computationally
efficient method to solve it. Section 3 applies II to instrumental
variable estimation with many weak instruments. Monte Carlo
experiments suggest that the II correction can outperform
common alternatives in finite samples.

2. Indirect inference as stochastic root-finding

Indirect inference (II) is a simulation-based estimation method
that was first developed in Smith (1993), Gouriéroux et al. (1993),
and Gallant and Tauchen (1996). It can be seen as a generalization
of the method of simulated moments.

1 The procedure described in this paper was implemented in R. The
code is made available under a permissive license on the author’s website:
http://umich.edu/~varel.
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The key idea of II is that, if we can simulate data that mimic
the properties of our observations, we can match functions of our
real and artificial data in order to glean information about the bias
function that affects our estimator of choice. In practice, we do this
by generating many datasets using various plausible values of the
parameters of interest. Then,we apply the biased estimator to each
of these datasets and compare the results to those obtained in real
data.When the ‘‘artificial’’ biased estimatesmatch the ‘‘real’’ biased
estimates, we can accept the values used for simulation as the II
estimates of the truth.

The above procedure is one special case of a general approach
which has applications beyond weak instrument bias correction;
II has for example been used to estimate dynamic stochastic gen-
eral equilibrium models (Dridi et al., 2007), dynamic panel mod-
els (Gouriéroux et al., 2010), and stable distributions (Garcia et al.,
2011). The interested reader should refer to Gouriéroux et al.
(1993) for an analysis of the conditions under which the II estima-
tor has desirable large-sample properties.

I now define the II estimator more formally and propose a
practical improvement in the way bias-corrected estimates can be
computed. Consider some data y produced by the true model with
parameter φ. Optimizing the objective function Q of the chosen
estimation method gives us

θ̂ = argmin
θ∈Θ

Q(y(φ)), with E[θ̂] ≠ φ. (1)

Let φs be a plausible value of the unknown parameter we wish
to estimate, ys a dataset producedby simulation usingφs, and θs the
result obtained by applying biased estimatorQ to ys. Because of the
stochastic nature of the simulation process, different realizations
h of ys will typically yield different values of θs, even if φs remains
constant. Gouriéroux et al. (2010) thus define the indirect inference
estimator as

φ̂
II

= arg min
φs∈Φ

θ̂ −
1
H

H
h=1

θs
h(φ

s)

 , (2)

where ∥ · ∥ is some distance metric, θ̂ is the biased estimate
obtained from the observed data, and θs

h is the biased estimate
obtained by applying estimatorQ to an hth dataset simulated using
parameter value φs. The intuition behind the use of H artificial
datasets is that we want to avoid matching the observed θ̂ to the
idiosyncratic features of any one particular simulated dataset. By
taking 1/H

H
h=1 θs

h(φ
s) with large enough H , we ‘‘average out’’

the noise that was introduced in the simulation and calibrate the
simulation to find a match between θ̂(φ) and E[θs(φs)]. When we
find such a match, we can accept φs as the II estimate of φ.

Put slightly differently, the problem of bias correction is a
special case of indirect inference in which our goal is to find the
root φs of a function θ̂(φ)− θs(φs) ≈ 0, where θ̂(φ) is given by the
data and θs(φs) is a noisy quantity that is defined implicitly through
simulation.2 Viewing the problem in this way allows us to draw on
a rich tradition of work on stochastic root-finding algorithms.3

One of the core insights of this literature, dating back to the
seminal contribution of Robbins andMonro (1951), is that the aver-
aging strategy employed in Eq. (2) is computationally wasteful. In-
deed,when trying to find the root of a stochastic function, it is often
muchmore efficient to ‘‘average out’’ noise across iterations rather

2 MacKinnon and Smith (1998) use a similar formulation but do not emphasize
the stochastic nature of this function.
3 See Pasupathy and Kim (2011) for a recent survey.

than at every step of the optimization. Under fairly permissive reg-
ularity conditions (Spall, 2003, Chapter 4), the stochastic approxi-
mation (SA) algorithm finds the root of a noisy function simply by4

φs
k+1 = φs

k − ak(θ̂
s
k − θ̂), (3)

where k denotes the kth step of the SA algorithm, θ̂ is the initial
biased estimate we wish to correct, θ̂

s
k is obtained by applying the

biased estimator Q to an artificial dataset that was simulated with
parameter φs

k, and ak is element k in a ‘‘gain’’ sequence of positive
constants that converges to zero.5

In the next section, I use this strategy to correct bias in 2SLS
models with many weak instruments. In each experiment, the
corrected estimates were obtained using just 100 evaluations
of the biased estimator (in total, not per iteration). In contrast,
Gouriéroux et al. (2010) use 15000 artificial datasets at every step
of the algorithm they use to optimize Eq. (2). So while it is true that
the II estimator ismore computationally involved than alternatives
such as LIML and 2SLS, this article shows that it is possible to
compute II estimates using a reasonable amount of resources.

3. 2SLS many weak instruments bias

It is well known that 2SLS estimates can be biased toward
ordinary least squares in finite samples when the instruments
are weak and/or numerous. The experiments described below
suggest that this bias can be equivalent to many times the true
coefficient value, and ‘‘even enormous samples do not eliminate
the possibility of quantitatively important finite-sample biases’’
(Bound et al., 1995, 446).

Consider a simple model with dependent variable yi, one
endogenous regressor xi, K instruments Zi, error vectors ε and υ ,
and unit index i (Hahn and Hausman, 2002; Hahn and Kuersteiner,
2002; Bun and Windmeijer, 2011):

yi = xiφ + εi (4)
xi = Z ′

iΠ + υi
εi
υi


∼ IIN


0,


σ 2
ε σευ
σευ σ 2

υ


.

The (biased) estimate is given by

θ̂2SLS =
x′Z(Z ′Z)−1Z ′y
x′Z(Z ′Z)−1Z ′x

= φ +
x′Z(Z ′Z)−1Z ′ε

x′Z(Z ′Z)−1Z ′x
. (5)

Hahn and Hausman (2002) derive the following expression for
the 2SLS bias:

E[θ̂2SLS] − φ ≈
K · σευ

R2

1
n

i=1
x2i

, (6)

4 The SA algorithm will only be appropriate where the quantity of interest and
the biased estimates we are matching have the same dimension and substantive
interpretation. Where this is not the case, for example if we conduct II by matching
on higher moments or some other function of the data, one could turn to another
stochastic optimization algorithm such as the simultaneous perturbation stochastic
approximation algorithm of Spall (1992). I should also note that deterministic
derivative-based root-finding methods such as the Newton–Raphson method can
be difficult to apply in the II bias correction context because the shape of the bias
function which relates φ to θ will generally be unknown, and because estimating
derivatives numerically can be prohibitively expensive given the stochastic nature
of the underlying simulation process.
5 A bad choice of gain sequence can affect the performance of the SA algorithm.

Spall (2003) offers goodpractical advice for the choice of ak , and Broadie et al. (2011)
propose a simple self-tuning method. In this work, I used ak = k−1 . I also ran tests
using the more flexible gain sequence recommended in Spall (2003), but obtained
nearly identical results.
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