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h i g h l i g h t s

• We introduce a new class of symmetric zero-sum games based on cycles.
• We find an infinity of Nash equilibria when the number of actions is even.
• We characterize the unique Nash equilibrium when the number of actions is odd.
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a b s t r a c t

This paper examines zero-sum games that are based on a cyclic preference relation defined over undis-
tinguished actions. For each of these games, the set of Nash equilibria is characterized. When the number
of actions is odd, a unique Nash equilibrium is always obtained. On the other hand, in the case of an even
number of actions, every such game exhibits an infinite number of Nash equilibria. Our results give some
insights as to the robustness of Nash equilibria with respect to perturbations of the action set.
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1. Introduction

We investigate the class of zero-sum games that are based on
a cyclic preference relation with undistinguished alternatives. A
remarkablemember of this family is the Rock–Paper–Scissors game,
whose unique Nash equilibrium is obtained when both players
put the same weight on each of the three actions. See Van den
Nouweland (2007) for an elegant proof of this known result.

A related contribution is that of Bahel (2012), who characterizes
the uniqueNash equilibriumof zero-sumgames that are based on a
cycle with distinguished alternatives. As we argue further on, two
important features (the indistinction of the actions in our cycles
and the fact that the payoff in case of a win is variable) clearly dif-
ferentiate the present family of games from that in Bahel (2012).
Consequently, the two methods of analysis and the characteriza-
tion results obtained differ. A further related contribution is that
of Duersch et al. (2012). We call the class of games under inves-
tigation here Extended Rock–Paper–Scissors (ERPS) games. Duer-
sch et al. (2012) define a class of ‘‘generalized Rock–Paper–Scissors
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(gRPS) games’’ that contains the ERPS games as a proper subclass.
They show in particular that a symmetric two-player zero-sum
game has a Nash equilibrium in pure strategies if and only if it is
not a gRPS game. It follows that an ERPS game does not have a Nash
equilibrium in pure strategies. We characterize the set of all Nash
equilibria, none of which is in pure strategies, for every ERPS game.

Our analysis makes use of the minimax theorem for zero-sum
games. It is shown that, when the number of actions available to
the players is odd, there is a unique Nash equilibrium in which the
players give a positive weight to each available action. It is known
from Kaplansky (1945) that an odd number of actions is necessary
for a symmetric zero-sumgame to exhibit onlyNash equilibria that
give a positive weight to each action. Our results show that this
condition is also sufficient for the subclass of ERPS games. On the
other hand, we find that there is a continuum of Nash equilibria
when the number of actions is even. In addition, we provide an
explicit characterization of the set of Nash equilibria for all ERPS
games.

We argue in the discussion of Section 4 that our results help
understand the dynamics of populations of animals that exhibit
competitive cycles. Our analysis also helps better understand how
changes to the action set may affect the set of Nash equilibria in
symmetric zero-sum games.
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2. Extended Rock–Paper–Scissors games

Consider a finite set of actions A = {a1, a2, . . . , aK } consisting
of K ≥ 3 alternatives.

Definition 1. A binary relation ≻, defined over A, will be called a
cycle (with undistinguished actions) if

ak ≻ aℓ if and only if k ≡ ℓ + 1 mod K . (1)

InDefinition 1,we essentially have a cyclic preference relation over
A. Note that a2 is preferred to a1, a3 is preferred to a2, . . . , aK is
preferred to aK−1, but a1 is preferred to aK . In addition, we have
the following: (a) each action ak ∈ A is ≻-preferred to exactly one
other action in A, (b) there is exactly one other action in A that is
≻-preferred to any given ak ∈ A.

Throughout the paper, for any integer z ∈ Z, we use the nota-
tion z to refer to the unique number x ∈ {1, . . . , K} such that x ≡

z mod K .1 Observe that relabeling each action ak ∈ A as ak+l (for
some fixed l ∈ {1, . . . , K − 1}) and considering anew the bi-
nary relation obtained fromDefinition 1would result in exactly the
samepreference relation.2 In otherwords, any of the actions a1, a2,
. . . , aK can be seen as the beginning (and the end) of the cyclewith-
out it affecting the binary relation: in this sense, we say that the
actions of the cycle ≻ are (structurally) undistinguished.

The following definition introduces the class of games studied
in this paper.

Definition 2. A game [Si, ui]i=1,2 will be called an Extended Rock–
Paper–Scissors (ERPS) game if there exists a cycle ≻ (defined over
A = {a1, . . . , aK }) and a positive vector α = (α1, . . . , αK ) ∈ RK

++

such that, for i ∈ {1, 2}, Si = A and player i’s payoff is

ui(ak, aℓ) =


αk if ak ≻ aℓ,
−αℓ if aℓ ≻ ak,
0 otherwise

(2)

when i chooses ak ∈ A and the other player chooses aℓ ∈ A.

We use the notation G(≻, α) to refer to an arbitrary ERPS game. In
essence, G(≻, α) is a symmetric zero-sum game such that a player
wins (i.e., gets a positive payoff) if and only if he/she picks an action
that is ≻-preferred to that of his/her opponent. If neither player
chooses an action that is ≻-preferred to the opponent’s action, the
outcome is a tie (which results in a payoff of zero for both players).
Observe that a player’s payoff when he/shewins,αk, may varywith
his/her winning action. Likewise, a player’s payoff when he/she
loses may vary depending on his/her losing action. This means
that, although the cycle ≻ treats all actions a1, . . . , aK in the same
way, these actions are in general not undistinguished in the game
G(≻, α). For the following subclass of ERPS games, however, all
actions available to the players receive identical treatment and are
therefore undistinguished.

Definition 3. An ERPS game G(≻, α) will be called a cycle-based
game with undistinguished actions (CBGU) if αk = αℓ, for any ak, aℓ

∈ {a1, . . . , aK }.

The families CBGU and ERPS are new to the literature on zero-sum
games. In Bahel (2012), ≻ is a complete binary relation on A such
that ak ≻ aℓ if k > ℓ, unless k = K and ℓ = 1 (in which case

1 For instance, K + 1 = 1 and −1 = K − 1.
2 Observe that the shift transformation tl : k → k + l is a permutation of

{1, . . . , K}.

a1 ≻ aK ).3 Obviously, action a1 plays a distinguished role in his
setting. Another important difference (with ERPS games) is the fact
that, in his framework, a player’s payoff to a win (loss) is the same,
regardless of the winning (losing) action. In fact, one can easily
check that the family ERPS and the class of cycle-based games
defined in Bahel (2012) have an empty intersection whenever K ≥

4. When K = 3, the two families share exactly one element, which
(up to the names of the three actions) is the Rock–Paper–Scissors
(RPS) game depicted by Example 1.

Next, we provide two examples that illustrate the families of
zero-sum games introduced in Definitions 2 and 3, respectively.

Example 1 (Rock–Paper–Scissors). 4 Each of two players simul-
taneously announces either Rock, Paper, or Scissors. Paper beats
(wraps) Rock, Rock beats (blunts) Scissors, and Scissors beats (cuts)
Paper. The player who names the winning object receives $1 from
his/her opponent; if both players make the same choice, then no
payment is made.

Observe that the RPS game is based on a cycle of length K = 3;
its matrix representation is as follows.

Player 2
Rock Paper Scissors

Player 1
Rock
Paper
Scissors

0, 0 −1, 1 1, −1
1, −1 0, 0 −1, 1
−1, 1 1, −1 0, 0

It iswell known that either player plays each of the three actions
Rock, Paper, Scissors with the same probability in the unique Nash
equilibrium of this game.

Example 2 (Modified Rock–Paper–Scissors). Consider the modified
version of the RPS game depicted by the following matrix.

Player 2
Rock Paper Scissors

Player 1
Rock
Paper
Scissors

0, 0 −1, 1 3, −3
1, −1 0, 0 −1, 1
−3, 3 1, −1 0, 0

It can be seen from the matrix that we still have Paper beats
Rock, Rock beats Scissors, and Scissors beats Paper. However, the
payoff to a win depends on the winning action: unlike in the stan-
dard version, a player gets a payoff of $3 if he/she wins with Rock.

The above two examples are both ERPS games, but only the
first one is a cycle-based game with undistinguished actions. An
interesting exercise is to try and predict how changes to the RPS
payoff matrix would affect the set of Nash equilibria of the game.5
A more important issue is to determine whether there is a generic
way of deriving the set ofNash equilibria of an arbitrary ERPS game.
The next section investigates these questions.

3. Analysis

Let Mi = {(mi(a1), . . . ,mi(aK )) ∈ RK
+
|
K

k=1 mi(ak) = 1} de-
note the set of mixed strategies of player i ∈ {1, 2}. The number
mi(ak) stands for the probability that player i plays action ak, k =

1, . . . , K . Player i’s expected payoff to any mixed-strategy pair

3 Notice from definition (1) that, in our setting, some actions in A are not ≻-
comparable when K > 3.
4 We adopt the language of Osborne (2004, p. 141) for this example. The game

has also been described by Von Neumann (1928, p. 303).
5 Weibull (1995, p. 77) considers ‘‘generalized Rock–Paper–Scissors games’’ in

which the RPS payoff matrix is modified in such a way that the game is no longer
a constant-sum game but is still symmetric, and the Nash equilibrium is invariant
under these modifications.
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