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h i g h l i g h t s

• We study the computational complexity of random serial dictatorship (RSD).
• We show that computing the RSD lottery is #P-complete.
• We propose an efficient algorithm that computes the support of the RSD lottery.
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a b s t r a c t

In social choice settings with linear preferences, random dictatorship is known to be the only social
decision scheme satisfying strategyproofness and ex post efficiency. When also allowing indifferences,
random serial dictatorship (RSD) is a well-known generalization of random dictatorship that retains both
properties. RSD has been particularly successful in the special domain of random assignment where
indifferences are unavoidable. While executing RSD is obviously feasible, we show that computing the
resulting probabilities is #P-complete, and thus intractable, both in the context of voting and assignment.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Social choice theory studies how a group of agents can
make collective decisions based on the – possibly conflicting –
preferences of its members. In the most general setting, there
is a set of abstract alternatives over which each agent entertains
preferences. A social decision scheme aggregates these preferences
into a probability distribution (or lottery) over the alternatives.

Perhaps themost well-known social decision scheme is random
dictatorship, in which one of the agents is uniformly chosen at
random and then picks his most preferred alternative. Gibbard
(1977) has shown that random dictatorship is the only social
decision scheme that is strategyproof and ex post efficient, i.e., it
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never puts positive probability on Pareto dominated alternatives.
Note that random dictatorship is only well-definedwhen there are
no ties in the agents’ preferences. However, ties are unavoidable
in many important domains of social choice, such as assignment,
matching, and coalition formation, since agents are assumed to be
indifferent among all outcomes in which their assignment, match,
or coalition is the same (e.g., Sönmez and Ünver, 2011).

In the presence of ties, random dictatorship is typically ex-
tended to random serial dictatorship (RSD), where dictators are in-
voked sequentially and ties between most-preferred alternatives
are broken by subsequent dictators.2 RSD retains the important
properties of ex post efficiency and strategyproofness and is well-
established in the context of random assignment (see e.g., Svens-
son, 1994; Abdulkadiroğlu and Sönmez, 1998; Bogomolnaia and
Moulin, 2001; Crès and Moulin, 2001).

2 RSD is referred to as random priority by Bogomolnaia and Moulin (2001).
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In this paper, we focus on two important domains of social
choice: (1) the voting setting, where alternatives are candidates
and agents’ preferences are given by rankings over candidates, and
(2) the aforementioned assignment setting, where each alternative
corresponds to an assignment of houses to agents and agents’ pref-
erences are given by rankings over houses. Whereas agents’ pref-
erences over alternatives are listed explicitly in the voting setting,
this is not the case in the assignment setting. However, prefer-
ences over houses can be easily extended to preferences over as-
signments by assuming that each agent only cares about the house
assigned to himself and is indifferent between all assignments in
which he is assigned the same house. As a consequence, the assign-
ment setting is a special case of the voting setting. However, due
to the different representations, computational statements do not
carry over from one setting to the other.

In various settings, the probability that a social decision scheme
assigns to an alternative is interpreted as the fraction of time or an-
other resource that is allocated to the alternative (see, e.g., Moulin,
2003; Bogomolnaia et al., 2005). Similarly, in the assignment set-
ting, the probability with which an agent is allocated a certain ob-
ject is often viewed as the fraction of the object that this agent
receives or the fraction of time that the agent is allowed to use the
shared object. As a consequence, computingRSD lotteries is of great
importance and has applications in domains such as scheduling of
resources (see, e.g., Crès and Moulin, 2001).

We examine the computational complexity of RSD and show
that computing the RSD lottery is #P-complete both in the voting
setting and in the assignment setting. Loosely speaking, #P is the
counting equivalent of NP—the class of decision problems whose
solutions can be verified in polynomial time. #P-completeness is
commonly seen as strong evidence that a problemcannot be solved
in polynomial time.

As mentioned above, neither of the two results implies the
other. We furthermore present a polynomial-time algorithm to
compute the support of the RSD lottery in the voting setting. This is
not possible in the assignment setting, because the support of the
RSD lotterymight be of exponential size. However,we candecide in
polynomial time whether a given alternative (i.e., an assignment)
is contained in the support or not.

2. Preliminaries

In the general social choice setting, there is a setN = {1, . . . , n}
of agents, who have preferences over a finite set A of alternatives.
The preferences of agent i ∈ N are represented by a complete
and transitive preference relation Ri ⊆ A × A. The interpretation
of (a, b) ∈ Ri, usually denoted by a Ri b, is that agent i values
alternative a at least as much as alternative b. In accordance with
conventional notation, wewrite Pi for the strict part of Ri, i.e., a Pi b
if a Ri b but not b Ri a, and Ii for the symmetric part of Ri, i.e., a Ii b if
a Ri b and b Ri a. A preference profile R = (R1, . . . , Rn) is an n-tuple
containing a preference relation Ri for every agent i ∈ N .

A preference relation Ri is linear if a Pi b or b Pi a for all distinct
alternatives a, b ∈ A. A preference relation Ri is dichotomous if
a Ri b Ri c implies a Ii b or b Ii c.

We let ΠN denote the set of all permutations of N and write
a permutation π ∈ ΠN as π = π(1) . . . π(n). For k ≤ n, we
furthermore let π |k denote the prefix of π of length k, i.e., π |k =
π(1) . . . π(k).

If Ri is a preference relation and B ⊆ A a subset of alternatives,
then maxRi(B) = {a ∈ B: a Ri b for all b ∈ B} is the set of most
preferred alternatives from B according to Ri. Hence, a Ii b for all
a, b ∈ maxRi(B) and a Pi b for all a ∈ maxRi(B), b ∈ B \maxRi(B).

In order to define the social decision scheme known as random
serial dictatorship (RSD), let us first define its deterministic variant

serial dictatorship (SD). For a given preference profile R and a per-
mutationπ ∈ ΠN , SD(R, π) is defined via the following procedure.
Agent π(1) chooses the set of most preferred alternatives from
A, π(2) chooses his most preferred alternatives from the refined
set and so on until all agents have been considered. The resulting
set of alternatives is returned. Formally, SD(R, π) is defined induc-
tively via SD(R, π |0) = A and SD(R, π |i) = maxRπ(i)(SD(R, π |i−1)).

Throughout this paper, we assume that the preferences of the
agents are such that there is no pair a, b ∈ A with a ≠ b and a Ii b
for all i ∈ N .3 This assumption ensures that the set SD(R, π) is
always a singleton. We will usually write SD(R, π) = a instead of
SD(R, π) = {a}.

We are now ready to define RSD. For a given preference pro-
file R, RSD returns SD(R, π), where π is chosen uniformly at ran-
dom from ΠN . The probability RSD(R )(a) of alternative a ∈ A
is thus proportional to the number of permutations π for which
SD(R, π) = a:

RSD(R )(a) =
1
n!

π ∈ ΠN
: SD(R, π) = a

 .
We refer to the probability RSD(R)(a) as the RSD probability of al-
ternative a and to the probability distribution RSD(R) as the RSD
lottery.

Our proofs leverage the fact that a certain matrix related to the
Pascal triangle has a non-zero determinant.

Lemma 1 (Bacher, 2002). The n × n matrix M = (mij)i,j given by
mij = (i+ j− 2)! has a non-zero determinant. That is,

det


0! 1! · · · (n− 1)!
1! 2! · · · n!
...

...
. . .

...
(n− 1)! n! · · · (2n− 2)!

 ≠ 0.

3. Voting setting

A voting problem is given by a triple (N, A, R ), where N = {1,
. . . , n} is a set of agents, A is a set of alternatives, and R = (R 1, . . . ,
R n) is a preference profile that contains, for each agent i, a
preference relation on the set of alternatives. The goal is to
choose an alternative that is socially acceptable according to the
preferences of the agents.

If each agent has a unique most preferred alternative, the RSD
lottery can be computed in linear time. Therefore, computational
aspects of RSD only become interesting when at least some
of the agents express indifferences among their most preferred
alternatives. The straightforward approach to compute the RSD
lottery involves the enumeration of permutations. This approach
obviously takes exponential time. At first sight, it seems that even
finding the support of the RSD lottery requires the enumeration
of all permutations. However, we outline a surprisingly simple
algorithm that checks in polynomial time whether a given
alternative a is contained in the support (Algorithm 1).

The algorithm is based on a greedy approach and maintains a
working set of alternatives A′ and aworking set of agentsN ′, which
are initialized as A and N , respectively. If no agent in N ′ has a as a
most preferred alternative in A′, then the algorithm returns ‘‘no’’.
Otherwise let i ∈ N ′ be the smallest index such that agent i has a as

3 In the assignment setting, this assumption always holds if the agents have linear
preferences over houses. SD (and RSD) can be definedwithout this assumption (see,
e.g., Aziz et al., 2013).
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