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h i g h l i g h t s

• Establishes a simple relationship between a Hessian and bordered Hessian.
• Derives necessary and sufficient second order conditions from this relationship.
• The only proof that avoids use of quadratic forms subject to side conditions.
• Clarifies Samuelson’s ‘‘great loss of symmetry’’.
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a b s t r a c t

We prove a relationship between the bordered Hessian in an equality constrained extremum problem
and the Hessian of the equivalent lower-dimension unconstrained problem. This relationship can be used
to derive principal minor conditions for the former from the relatively simple and accessible conditions
for the latter.
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It is surprisingly difficult to find a complete and accessible proof
of conditions on principal minors of the bordered Hessian matrix
for extremum problems with an arbitrary number n of choice vari-
ables and m < n equality side conditions. Most presentations
emphasize sufficiency and stop short of proving principal minor
conditions, typically proving that definiteness of the matrix sub-
ject to side conditions is part of the sufficient conditions for an
extremum but providing only an unproven statement that such
definiteness is equivalent to particular sign patterns among prin-
cipal minors. Lancaster (1968) is an exception, providing proofs of
both the former (Section 4.5) and latter (Section R6.3), but Lan-
caster does not prove necessary second order conditions. Simon
and Blume provide a relatively complete, accessible and mod-
ern treatment of both necessary and sufficient (semi) definite-
ness conditions for an unconstrained optimum (Simon and Blume,
1994, Section 30.4); and prove the equivalent sufficient princi-
pal minor conditions (pp. 393–395) but state without proof the
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equivalent necessary principal minor conditions (p. 383); and for
the constrained case provide a full proof only that a definite Hes-
sian subject to side constraints is part of the sufficient conditions
(Section 30.5). One must typically supplement this type of dis-
cussion with proofs from Debreu (1952) or Gantmacher (1959,
pp. 306–307) of the relationships between principal minors and
(semi) definiteness subject to side conditions.

The traditional emphasis on sufficiency rather than necessity is
both dated and incomplete for economic analysis.

It is dated because analytic derivation of the bordered Hes-
sian may not be possible for a modern large scale optimization
or equilibrium application, and even if the matrix can be derived
checking definiteness is computationally complex (Pardalos and
Schnitger, 1988). Computationally and analytically simpler condi-
tions are available for applied problems (Magnus and Neudecker,
1988, pp. 135–139, Morrow, 2011).

It is incomplete because sufficiency is not useful for derivation
of refutable hypotheses in optimization-based positive economic
theories. These theories begin with a behavioral postulate that an
economic agent engages in constrained optimizing behavior and
then seek to uncover the refutable hypotheses implied by that
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behavioral postulate. Only necessary, not sufficient conditions can
be implied by the optimization postulate. Principal minors of the
bordered Hessian appear in many comparative static expressions,
hence we must know necessary conditions on those principal
minors to determine which comparative static signs are implied
by the postulated optimizing behavior. This distinction between
the role of necessary second order conditions in positive economic
theory versus the role of sufficient conditions in computational
applications is almost absent from the literature.

These comments apply with equal force to second order
conditions for unconstrained extrema. But it is, of course, easier
to prove (semi) definiteness of the Hessian for an unconstrained
problem and also easier to prove the relationships between such
(semi) definiteness and signs of principal minors. Hence one way
to assemble a relatively accessible and complete proof of principal
minor conditions when there are equality constraints, both
necessary and sufficient, is to apply the corresponding conditions
for the unconstrained case to the lower-dimension version of
the constrained problem obtained by substituting the constraint
for an equal number of the choice variables. This approach
suffers, however, from the relative disutility of the resulting
conditions. Generally, conditions on the bordered Hessian are
easier to apply and more immediately usable, as originally
emphasized by Hancock (1917, Chapter 6) and Samuelson (1947,
Appendix A), because it is relatively easy to obtain comparative
static expressions by differentiating Lagrangian-based first order
conditions, and it is the principal minors of the bordered Hessian
that appear directly in those derivations.

This paper derives principal minor conditions on the bordered
Hessian directly from the corresponding conditions on the lower-
dimension unconstrained problem. It builds naturally on textbook
presentations of the unconstrained case, supplemented by the
unconstrained relationships between (semi) definiteness and
principal minors, without using any concepts except calculus and
matrix algebra familiar to graduate students in economics. In
particular, the approach completely eliminates consideration of
quadratic forms subject to side conditions. Such consideration
is unavoidable with extant proofs but is tedious and repetitive
once principal minor conditions have been established for (semi)
definite quadratic forms without side conditions. The new proof
integrates constrained and unconstrained statements of principal
minor conditions, both necessary and sufficient. It is similar
in spirit to Im (2005) but Im addresses only the sufficiency
relationship between the Hessian and bordered Hessian and does
not explore the relationships between the principal minors of the
two matrices.

1. Notation

Denote by A′ the transpose of the matrix A. If A is square of
dimension k, A(J) denotes the principal submatrix consisting of
rows and columns J ⊂ {1, . . . , k} (excluding J = ∅).

Assume X ⊂ Rn is an open set via the usual Euclidean metric;
let f : X → R1 be the objective and h : X → Rm for m < n
be the equality constraint. The values of a vector-valued function
like h are interpreted as column vectors in matrix equations.Dh(x)
is the m × n Jacobian matrix of h evaluated at x ∈ X (Apostol,
1974, p. 351). To avoid notational clutter, the arguments of a
Jacobian are omittedwhen the point of evaluation is clear from the
context. The Lagrangian function L : X × Rm

→ R1 is defined by
L(x, λ) ≡ f (x) − λ′h(x).

Let x = (y, z) be a partition of the choice vector x into the first
n − m and lastm components so the constraint can be substituted
for z to form the lower-dimension unconstrained problem. When
differentiating with respect to part of a partition, notation like

Dyh(y, z) denotes the m × (n − m) Jacobian of h with respect to
y evaluated at (y, z). A critical point is denoted x̂ = (ŷ, ẑ) ∈ X .

For a real-valued function like f , the n × n matrix D2f (x) ≡

D(Df )′(x) is the Hessian matrix of f evaluated at x ∈ X . As above,
D2

y f (y, z) denotes the (n−m)×(n−m)Hessian of f with respect to
y evaluated at (y, z). Recall that the Hessian is symmetric at xwhen
it both exists in a neighborhood of x and each entry is continuous
at x (Apostol, 1974, Theorem 12.13).

2. Lower-dimension objective

Restating an equality constrained optimization problem as a
lower-dimension unconstrained objective with an optimum that
can be studied using calculus requires that it be possible to
substitute the constraint for an equal number of choice variables
while retaining differentiability within a neighborhood of the
optimum. A key part of the sufficient conditions for this from
the implicit function theorem is that Dh(x̂) has rank m (Apostol,
1974, Theorem 13.7). Put in a more convenient form, it must be
possible to order the choice variables so that the partition x =

(y, z) yields a nonsingular Dzh(ŷ, ẑ) matrix.
This rank condition may appear to be an aspect of the reduced-

dimension approach that is not needed in the Lagrangian approach,
or it may appear that substitution of h for z introduces a loss of
symmetry in the treatment of choice variables.1 However, this
rank condition is exactly the constraint qualification typically used
to ensure existence of a unique Lagrange multiplier; without it,
manipulations involving Lagrange multipliers are ill-defined (see,
for example, Apostol, 1974, Theorem 13.12). And the classical
bordered Hessian approach is equally ‘‘unsymmetric’’ when
properly interpreted, precisely because the classical conditions are
not applied to the portion z of the choice vector (more on this at
the end of Section 4).

Assuming h is continuously differentiable in an open ball about
x̂ and Dzh(ŷ, ẑ) is nonsingular, the implicit function theorem
ensures the existence of an open ball Bϵ(ŷ) ⊂ Rn−m and a unique
continuously differentiable function φ : Bϵ(ŷ) → Rm such that
(ŷ, φ(ŷ)) = x̂ and

h(y, φ(y)) = 0 for y ∈ Bϵ(ŷ). (1)

Therefore ŷ is a local extremum of the composite function f̃ (y) =

f (y, φ(y)) over y ∈ Bϵ(ŷ) if and only if x̂ is a local extremum of f
subject to h = 0. f̃ is the lower-dimensionunconstrained objective.

3. Relationship between Hessian and Bordered Hessian

The following theorem provides the algebraic relationship
between the Hessian of f̃ and the Hessian of L at a stationary point
of L.

Theorem 1. For x̂ = (ŷ, ẑ) ∈ X, assume:
1. h(x̂) = 0,
2. D2f and D2h exist in an open ball about x̂ and are continuous at x̂,

and
3. Dzh(ŷ, ẑ) is nonsingular.

If there exists λ̂ ∈ Rm such that DzL(ŷ, ẑ, λ̂) = 0 then

D2 f̃ = D2
yL − (Dy(D(z,λ)L)′)′(D2

(z,λ)L)
−1Dy(D(z,λ)L)′

at (x̂, λ̂). (2)

1 Hancock criticized the lower-dimension approach as ‘‘unsymmetric’’ in the
treatment of choice variables (Hancock, 1917, p. 103). Samuelson, who apparently
relied on Hancock in this regard, declares: ‘‘However, there is a great loss of
symmetry in such a procedure since not all our variables are treated alike.
Fortunately, by the use of an artifice which can be rigorously justified, it is possible
to derive a more symmetrical set of conditions’’ (Samuelson, 1947, p. 363) (the
‘‘artifice’’ referred to here is the Lagrangian function).



Download English Version:

https://daneshyari.com/en/article/5059549

Download Persian Version:

https://daneshyari.com/article/5059549

Daneshyari.com

https://daneshyari.com/en/article/5059549
https://daneshyari.com/article/5059549
https://daneshyari.com

