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h i g h l i g h t s

• We identify superior models of interest rates in predicting economic fluctuations.
• Models with 3-month Treasury bill interest rate have better performance.
• The best one consists of a short-term rate and a term spread.
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a b s t r a c t

It is well documented that the term structure of interest rates has predictive power for real economic
growth. Applying the stepwise superior predictive ability test, we find that superior models contain both
a short-term rate and a term spread.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

It is well documented in the literature that the term structure
of interest rates contains useful information about future states of
the economy. In particular, empirical studies show that the term
spreads between short-term and long-term government bond
rates have significant predictive power for the real GDP growth
in the US. However, Ang et al. (2006) argue that using only one
particular term spread may be inefficient since there is more
information across thewhole yield curve. On the other hand, Bordo
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and Haubrich (2008a,b), based on the historical evidence, suggest
that themodel using both the short-term rate and the term spreads
is better than those using only the short-term rate on predicting
real GNP growth.

Although there exist some theories regarding the predictive
power of the term structure on real economic growth, economists
still have no consensus on which theory indeed explains the
relationship. Therefore, researchers construct various empirical
models consisting of different short-term rates, long-term rates,
and term spreads to evaluate the predictive power. Data snooping
bias may arise when we reuse the same data set to test many
models for the predictive power of the term structure. It is natural
to question whether the predictive power found in the literature is
real or due to chance. If the predictive power is real, then a relevant
question would be: what are the best predictive models?

In this paper, we apply the Step-SPA test (Hsu et al., 2010) to
identify superiormodels without data snooping bias.We construct
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a set of 900 predictive models that includes various combinations
of interest rates and term spreads. The null hypothesis is that none
of those alternative models is superior to a benchmark. The result
indicates that, for predicting the annual growth rates of real GDP,
the bestmodel consists of the short-term rate of 3-month Treasury
bill and the term spread between this short rate and the yield of 5-
year Treasury note.

2. The benchmark and alternative models

The following empirical model is commonly used to examine
the relationship between the quarterly data of real GDP, Yt , and
the term spreads. It is the linear regression model of annualized
real GDP growth rate over the next k quarters:

gk,t = c + γ (LRt − SRt) + εk,t , (1)

where gk,t = (400/k)(ln Yt+k − ln Yt), and LRt and SRt are re-
spectively the long-term and short-term interest rates. Stock and
Watson (2003) suggest that additional lagged variables should be
included in (1) to improve the model performance. We thus ex-
tend (1) to construct a set of alternative models that contain vari-
ous combinations of interest rates and term spreads:

gk,t = c + α(B)SRt + εk,t , (2)

gk,t = c + β(B)LRt + εk,t , (3)

gk,t = c + γ (B)(LRt − SRt) + εk,t , (4)

gk,t = c + α(B)SRt + γ (B)(LRt − SRt) + εk,t , (5)

where α(B), β(B), and γ (B) are lag polynomials with j lags, so that

h(B)Zt = h0Zt + h1Zt−1 + h2Zt−2 + · · · + hjZt−j.

This class of models includes the models with short-term rates,
those with long-term rates, those with term spreads, and those
with short-term rates and term spreads. To capture the variation
of interest rates used in the literature, SRt may be the effective fed-
eral funds rate (FF), the secondary market rate of 3-month Trea-
sury bill (TB), and the yield rate of 1-year Treasury note (GR1). For
the same reason, LRt may be the yield rates of 3, 5, and 10 year
Treasury notes, denoted by GR3,GR5, and GR10, respectively.

Since the data studied here are quarterly and the sample size
is limited, we only consider models with lag polynomials of order
j = 0, 1, 2, 3, 4. That is, as in Stock and Watson (2003), up to four
lags of regressors are included in the models. Following Stock and
Watson (2003) and Bordo and Haubrich (2008a,b), we also use the
squared error as the performance measure in the test. Therefore,
we need to specify the window length of rolling regressions,
denoted by l. In Bordo and Haubrich (2008a), for example, they
report the results based on the window length of 24 quarters.
Here, we incorporate various models with l = 24, 28, 32, 36, 40
(corresponding to 6–10 years) into the alternative set. As a result,
we have 4 groups of models, 5 different lengths of polynomials,
3 × 3 combinations of short rates and long rates, and 5 window
lengths of rolling regressions. This yields a set containing 900 (=

4 × 5 × 3 × 3 × 5) alternative models.
As for the benchmark model in the Step-SPA test, a candidate

is the AR model used in Stock and Watson (2003) and Bordo and

Haubrich (2008a,b):

gk,t = c + δ(B)gk,t−1 + εk,t , (6)

where δ(B) is a lag polynomial with j = 4 lags. The order of j = 4 is
selected by the Akaike information criterion among j = 1, 2, 3, 4.
Moreover, we need to specify the window length of rolling regres-
sions, denoted by l∗, for the benchmarkmodel (6). Note that each l∗
characterizes a particular benchmarkmodel. In this study, we con-
sider 5 window lengths of l∗ = 24, 28, 32, 36, 40 for (6). Also note
that (6) is not nested in the alternative models, so that the asymp-
totic normality for the SPA and Step-SPA tests is valid (see Hansen,
2005, p. 367).

3. Testing method

We formally state the question as follows. Let m be the model
index for the alternative models, so that we have m = 1, 2, . . . ,
900. In the mth alternative model with the window length of l, let
Lm,t(k) be the sequence of squared errors from rolling regressions
such that

Lm,t(k) = (gk,t − ĝk,t)2,

for t = l + 1, . . . ,N − k, where ĝk,t is the predicted value from
the model, and N and k are respectively the data length and the
forecasting horizon as defined in (1). For the maximizing window
length l = 40 and k = 4, the actual length of Lm,t(k) is N − k − l,
simply denoted by n. We thus relabel the sequence Lm,t(k) as
t = 1, 2, 3, . . . , n. Similarly, let L0,t(k) be the sequence of squared
errors from rolling regressions in the benchmark model. We
further define dm,t ≡ L0,t(k)−Lm,t(k), dt ≡ (d1,t , d2,t , . . . , d900,t)′,
and µ ≡ E(dt). Then, the null hypothesis of interest is

H0 : µ ≤ 0. (7)

That is, none of the alternative models is superior to the bench-
mark.

To implement the Step-SPA test, we first compute the studen-
tized test statistic T as follows:

T ≡ max


max
m=1,...,900

n1/2d̄m
ω̂m

, 0


, (8)

where d̄m = n−1 n
t=1 dm,t and ω̂2

m is a consistent estimator of
var(n1/2d̄m). Following Hansen (2005, p. 372), we use the ω̂2

m based
on Politis and Romano (1994).

Hansen (2005) suggests that the null distribution should be
approximated by N(µ̂,Ω̂) in which the estimator for µm is

µ̂m = d̄m1

n1/2d̄m

ω̂m
≤ −


2 log log n


,

for m = 1, 2, . . . , 900, where 1[A] is the indicator function of the
event A. That is, a poormodel with d̄m smaller than a threshold will
be re-centered in constructing the null distribution. Therefore, we
have µ̂m = 0 almost surely ifµm = 0, and µ̂m → µm in probability
if µm < 0. Including this re-centering process would improve the
testing power; see Hansen (2005, p. 371).

We now describe how to bootstrap the null distribution and
determine the p value and the critical value in the Step-SPA test.
Given the parameter q ∈ (0, 1] of the geometric distribution, the
stationary bootstrap of Politis and Romano (1994) enables us to
reproduce pseudo time-series sets of dt , denoted by (d∗

1,b,t , d
∗

2,b,t ,

. . . , d∗

900,b,t)
′ for b = 1, 2, . . . , B, where B is the number of boot-

straps. Defining h∗

m,b,t = d∗

m,b,t − µ̂m and h̄∗

m,b = n−1 n
t=1 h

∗

m,b,t ,
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