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• Extension of threshold regression model to allow for a flexible threshold variable.
• Threshold variable parameterized as a linear combination of exogenous variables.
• Least squares estimator for the parameters of the model.
• Validity of the proposed methodological framework assessed by a Monte Carlo study.
• Application to nonlinear dynamics in US stock returns.
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a b s t r a c t

This paper proposes an extension to threshold-type switching models that lets the threshold variable be
a linear combination of exogenous variables with unknown coefficients. An algorithm to estimate the
model’s parameters by least squares is provided and the validity of the methodological framework is
assessed by a Monte Carlo study. The empirical usefulness of the proposed specification is illustrated by
an application to US stock returns.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The data generating processes of several economic and financial
variables are characterized by a finite number of states or
regimes, which can be described by complementary econometric
models. Stock returns are an example in this respect: Paye and
Timmermann (2006) show that returns’ processes are subject to
structural breaks; Guidolin and Timmermann (2006) document
the existence of recurrent states linked to the business cycle;
and Guidolin et al. (2009) employ Hansen’s (2000) threshold
regression to capture nonlinear feedback effects. This paper
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focuses on threshold models, in which the prevailing regime
depends on a single threshold variable: this variable has then to
be a priori chosen or selected according to statistical criteria. This
parameterization may however be too restrictive for empirical
purposes, as in practice several variables may drive regimes
dynamics. In this paperwepropose a simple extension to threshold
models by letting the threshold variable be a linear combination
of a set of variables with unknown coefficients. In our view, this
extension can be potentially useful in applied work, such as the
analysis of stock returns dynamics.

The paper is organized as follows: Section 2 describes the
model; a sufficient identification condition and an estimation
algorithm are introduced in Section 3; a Monte Carlo analysis is
performed in Section 4; consistently with the previous discussion,
an application to US stock returns is provided in Section 5; and
concluding remarks are given in Section 6.
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2. Model

We consider the model
yt = β′xt−sx + δ′xt−sx I


λ′qt−sq > α


+ ut ,

t = s + 1, . . . , T , s ≡ max

sx, sq


, (1)

where I (·) is the indicator function; yt ∈ Y ⊆ R is the dependent
variable; xt−sx ∈ X ⊆ Rkx is a kx × 1 vector of explanatory
variables; the threshold variable λ′qt−sq is a linear combination
of the elements of the kq × 1 vector of random variables qt−sq ≡
q1,t−sq , . . . , qkq,t−sq

′
∈ Q ⊆ Rkq with coefficients collected in the

kq × 1 vector of parameters λ ≡

λ1, . . . , λkq

′; α is the threshold
value; β and δ are kx × 1 vectors of slope coefficients; ut is the
error term such that E


ut |xt−sx , qt−sq


= 0. For the purpose of

this paper, the delay parameters sx ≥ 0 and sq ≥ 0 are assumed
to be known and common across the elements of xt−sx and qt−sq ,
respectively.

The specification in (1) extends Hansen’s (2000) generalization
of Tong’s (1983) threshold autoregressive model by letting the
threshold variable λ′qt−sq be a linear combination of the variables
included in qt−sq with unknown coefficients collected in λ. The
flexible parameterization λ′qt−sq in (1) requires neither a priori
choice of a unique threshold variable from the elements ofqt−sq nor
a selection according to statistical criteria: the threshold variable
in (1) reduces to qj,t−sq when λ is the kq × 1 vector with the j-th
element equal to one and all other elements equal to zero. The
model in (1) differs from Seo and Linton’s (2007) as in the latter
the threshold value (and not the threshold variable) is a linear
combination of exogenous variables and the threshold variable is
a priori chosen or selected from the elements of qt−sq : Seo and
Linton’s (2007) model is identified without further restrictions,
unlike the model in (1) as discussed in Section 3.1.

3. Identification and estimation

3.1. Identification

Without suitable restrictions imposed on λ in (1) the parameter
vectors


λ′, α

′ and

hλ′, hα

′ are observationally equivalent for
0 < h < ∞: formally, given any h ∈ R,
P


I

λ′qt−sq > α


= I


hλ′qt−sq > hα


= 1 ⇔ 0 < h < ∞,

and (1) is not identified. In Theorem 3.1 below we provide a
sufficient identification condition that is functional to the empirical
application in Section 5: we want to stress this point as less
stringent conditions may be derived.1 Let ιkq denote the kq × 1
vector of ones, and consider the following theorem:

Theorem 3.1. Let λ′ιkq = c where c is a known and positive con-
stant. Then the model in (1) is identified.
Proof of Theorem 3.1. Since λ′ιkq = c we can write λ1 = c −kq

j=2 λj. It follows that

λ′qt−sq = q1,t−sqλ1 +

kq
j=2

qj,t−sqλj

= q1,t−sqc +

kq
j=2


qj,t−sq − q1,t−sq


λj > α

⇔ q1,t−sq >
α

c
−

kq
j=2


qj,t−sq − q1,t−sq

 λj

c
.

1 In particular, the constant c introduced in Theorem 3.1 can take any value on
the real line: in this case, the result stated in Theorem 3.1 still holds, but the proof
has to be suitably generalized.

Given any h ∈ R,

P


I


q1,t−sq >

α

c
−

kq
j=2


qj,t−sq − q1,t−sq

 λj

c



= I


q1,t−sq >

hα
c

−

kq
j=2


qj,t−sq − q1,t−sq

 hλj

c


= 1

⇔ h = 1,

and the model in (1) is identified. �

3.2. Estimation

Given E(ut |xt−sx , qt−sq) = 0, the parameter vectors (β′, δ′, λ′,

α)′ in (1) can be consistently estimated by least squares
provided the memory of the sequence


xt−sx , qt−sq , ut

T
t=s+1 is

suitably bounded, the required higher order moments exist,
and multicollinearity issues are ruled out: see Hansen (2000)
for further details. Formally, the least squares estimator for
β′, δ′, λ′, α

′ is
β̂

′

, δ̂
′

, λ̂
′

, α̂
′

= arg min
(b,d,l,a)

T
t=s+1

e2t (b, d, l, a) , (2)

where et (b, d, l, a) is defined as
et (b, d, l, a) ≡ yt − b′xt−sx − d′xt−sx I


l′qt−sq > a


,

and

b′, d′, l′, a

′ is a generic element of the parameter space
of


β′, δ′, λ′, α

′. Due to the jump discontinuity in the objective
function induced by I (·), the estimator for


λ′, α

′ is super-
consistent: it converges at a rate equal to (T − s) and it is not
asymptotically normally distributed, with asymptotic distribution
that generally depends on a host of nuisance parameters. The least

squares estimator

β̂

′

, δ̂
′
′

for

β′, δ′

′ is (T − s)1/2 asymptotically
normally distributed and asymptotically independent of that for
λ′, α

′: inference on

β′, δ′

′ can be performed as if

λ′, α

′ were
known. See Chan (1993) and Hansen (2000) for technical details.

From a computational standpoint, we propose a two-step
algorithm to estimate


λ′, α

′ and

β′, δ′

′ in (1) by sequential
minimization of the residual sum of squares: we first estimate
λ′, α

′ by constructing an objective function defined on the
parameter space of


λ′, α

′ only; we then estimate

β′, δ′

′ given
the estimator for


λ′, α

′ obtained in the previous step. The
proposed algorithm is implemented as follows:
1. Define the set L ≡ L1 × · · · × Lkq so that l in (2) is such that

l ≡

l1, . . . , lkq

′
∈ L and lj ∈ Lj for j = 1, . . . , kq, where ×

denotes the Cartesian product operator: L can be constructed
according to economic arguments such as those put forward
in Section 5. For l ∈ L define the set A (l) so that a in (2) is
such that a = a (l) ∈ A (l): following Tong and Lim (1980), the
elements of A (l) are a subset of the quantiles of the empirical
distribution function of l′qt−sq . Define

xt−sx [l, a (l)] ≡

x′

t−sx , x
′

t−sx I

l′qt−sq > a (l)

′

and consider
β̂ [l, a (l)]′ , δ̂ [l, a (l)]′

′

=


T

t=s+1

xt−sx [l, a (l)] xt−sx [l, a (l)]′
−1

×


T

t=s+1

xt−sx [l, a (l)] yt


:
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