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h i g h l i g h t s

• Echenique and Komunjer’s (2009) testability of complementarity is reconsidered.
• Their testable condition is implied by a tail condition without complementarity.
• A stronger version of complementarity implies their testable condition.
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a b s t r a c t

This paper revisits testability of complementarity in economicmodels withmultiple equilibria studied by
Echenique and Komunjer (2009). We find that Echenique and Komunjer’s (2009) testable implications on
extreme quantiles can be implied by a weaker version of their tail condition without complementarity,
and on the other hand, a slightly stronger version of complementarity implies their testable implications
without the tail condition.

© 2013 Elsevier B.V. All rights reserved.

1. Main result

We first introduce the setup and main result of Echenique and
Komunjer (2009) (hereafter, EK). Our notation closely follows EK’s.
Consider a structural equation:
r (Y , X) = U,

where Y ∈ R is a dependent variable, X ∈ X ⊆ R is an explanatory
variable,U ∈ R is a disturbance term, and r : R×X → R is a func-
tion implied by economic theory. We observe X and Y but do not
observeU . EK studied testability of thismodelwhen there are com-
plementarities between X and Y without assuming a parametric
functional form of r , dependence structure between X and U , and
specific equilibrium selection rule. Let Exu = {y ∈ R|r (y, x) = u}
be the equilibrium set for given x and u, FU|X=x be the conditional
distribution of U given X = x (which is assumed to have a strictly
positive density), and F̄Y |X=x(y) = 1 − FY |X=x(y), where FY |X=x is
the conditional distribution of Y given X = x.

By an innovative argument to focus on the largest or smallest
equilibrium and to apply a change of variable technique, EK
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obtained the following result (the comments in the parentheses
are added by the authors).

Assumption S1. (i) The function r : R×X → R is continuous (on
y ∈ R for each givenX ∈ X); (ii) for any x ∈ X, limy→−∞ r (y, x) =

+∞ and limy→+∞ r (y, x) = −∞; (iii) for any (x, u) ∈ X × R, Exu

is a finite set. We write Exu =

ξ1xu, . . . , ξnxxu


(ξ1xu ≤ · · · ≤

ξnxxu) with nx = Card (Exu) (which is finite and does not depend
on u). (Also, the selection rule Pxu, a probability distribution over
Exu, assigns probabilities


π1x, . . . , πnxx


to


ξ1xu, . . . , ξnxxu


for all

u ∈ R with π1x > 0 and πnxx > 0.)

Assumption S2. r (y, x) is monotone increasing in x on R.

Assumption S3 (For any x1, x2 ∈ X with x1 < x2). (i) limy→+∞

[r (y, x1) /r (y, x2)] = λ with λ > 1; (ii) for any λ > 1,
limu→−∞ FU|X=x1 (λu) /FU|X=x1(u) = 0; (iii) FU|X=x1(u)/FU|X=x2

(u) is bounded as u → −∞.

Theorem 1 (Echenique–Komunjer). Assume that S1, S2, and S3 hold.
Fix a selection rule PXU . For any x1, x2 ∈ X with x1 ≤ x2, there exists
ȳ ∈ R such that for all y ≥ ȳ, F̄Y |X=x1(y) ≤ F̄Y |X=x2(y).
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Fig. 1. Plots of y → r (y, x1) (solid line) and y → r (y, x2) (dashed line) with
x1 < x2 .

EK argued that the above monotonicity in x on the tail of F̄Y |X=x
is a testable implication of Assumption S2, complementarities
between y and x. By a close inspection of the proof of EK, we find
that the conclusion of Theorem 1 can be derived without S2 and
indeed S3(i), which guarantees complementarities in the tail, is
sufficient. We introduce the following weaker version of S3(i).

Assumption S3. (i′) limy→+∞ infy′≥y

r

y′, x1


/r


y′, x2


= λ

with λ > 1.

Assumption S2 requires that the structural function r (y, x) is
monotone increasing in x for all y (i.e., for each y, it holds r (y, x1) <
r (y, x2) for all x1 < x2), which in turn implies the monotonicity
of the largest equilibrium (i.e., ξnx1 x1u < ξnx2 x2u) for all u ∈ R.
EK used this monotone comparative statics prediction as a key to
obtain the testable implication. On the other hand, S3(i′) (and thus
S3(i)) only requires that the structural function r (y, x) ismonotone
increasing in x for large enough y, i.e., there exists ỹ such that for
each y > ỹ, it holds r (y, x1) < r (y, x2) for all x1 < x2 (see,
Fig. 1). Therefore, the monotone comparative statics prediction
may not hold true for some values of u. However, roughly speaking,
because the structural function r (y, x) eventually has a downward
slope in y by S1, we can still argue that there is a cutoff value ū
below which the largest equilibrium is large enough so that the
monotone comparative statics prediction holds true. Indeed, this
prediction on the largest equilibrium for sufficiently small values
of u is enough to derive the testable implication for conditional
quantiles in the tail. This intuition is formalized in Proposition (i)
below (see also Remark 2).1

Proposition. Fix a selection rule PXU and x1, x2 ∈ X with x1 < x2.
(i) Under S1 and S3 (i′) and (ii)–(iii), the conclusion of Theo-

rem 1 holds true.
(ii) Under S1 and S3, the conclusion of Theorem 1 holds true.
(iii) Under S1–S3(iii), limy→+∞ F̄Y |X=x1(y)/F̄Y |X=x2(y) is bounded.
(iv) Under S1, S3 (i′) is neither necessary nor sufficient for S2.
(v) Under S1, S3 (i′) is sufficient but not necessary for complemen-

tarity at extremes (i.e., there exists ȳ ∈ R such that r (y, x1) <
r (y, x2) for all y ≥ ȳ).

(vi) The conclusion of Theorem 1, S1, and S3(ii)–(iii) are not suffi-
cient for complementarity at extremes.

Proof of (i). Let re (y, x) be a nonincreasing upper envelope of
r (y, x) on [y0, +∞) for a given y0 ∈ R, i.e., re(y, x) = inf


q(y) : q

is nonincreasing on [y0, +∞) and q(y)≥ r(y, x) for all [y0, +∞)

.

We proceed in three steps.
Step 1: Show that for any λ1 ∈ (1, λ), there exists ȳ ∈ R such

that r (y, x1) ≤ λ1r (y, x2) for all y ≥ ȳ. Pick any λ1 ∈ (1, λ). By
S3(i′), there exists y∗

∈ R such that

inf
y≥y∗

[r (y, x1) /r (y, x2)] ≥ λ1, (1.1)

1 We are grateful to Ivana Komunjer to clarify this point.

for all y ≥ y∗. Moreover, by S1(ii), there exists y′
∈ R such that

r (y, x2) ≤ −1 for all y ≥ y′. Thus, by taking ȳ = max

y∗, y′


,

we have r (y, x1) ≤ λ1r (y, x2) for all y ≥ ȳ. Thus, we obtain the
conclusion of this step.

Step 2: Show that there exists ỹ ∈ R such that re (y, x1) ≤

λ1re (y, x2) for all y ≥ ỹ. From Step 1, take ȳ ∈ R such that r(y, x1)
≤ λ1r (y, x2) for all y ≥ ȳ. By taking ỹ = ȳ and letting re (y, x2)
be a nonincreasing upper envelope for ỹ, we have r (y, x1) ≤

λ1r (y, x2) ≤ λ1re (y, x2) for all y ≥ ỹ. Now from the definition
of re (y, x),

re (y, x1) = inf {q(y) : q is nonincreasing on
ỹ, +∞


and q(y) ≥ r (y, x1) for all


ỹ, +∞


≤ λ1re(y, x2),

for all y ≥ ỹ. Thus, we obtain the conclusion of this step.

Step 3: Show limy→+∞

F̄Y |X=x1 (y)

F̄Y |X=x2 (y)
= 0. By Proposition 1 of EK, we

have

F̄Y |X=x1(y)
F̄Y |X=x2(y)

≤
1

πnx2 x2

F̄n1Y |X=x1(y)
F̄n2Y |X=x2(y)

,

where F̄niY |X=xi(y) =


−∞

+∞
I

ξnixiu ≥ y


fU|X=xidu is the conditional

tail probability of the largest equilibrium at xi. Also, by Lemma 1 of
EK, we have I


ξnixiu ≥ y


= I (u ≤ re (y, x)).2 Thus, we have

F̄Y |X=x1(y)
F̄Y |X=x2(y)

≤
1

πnx2 x2

FU|X=x1 (re (y, x1))
FU|X=x2 (re (y, x2))

. (1.2)

By Step 2, there exists ỹ ∈ R such that re (y, x1) ≤ λ1re (y, x2) for
all y ≥ ỹ. Therefore, for all y ≥ ỹ,

FU|X=x1 (re (y, x1))
FU|X=x2 (re (y, x2))

≤
FU|X=x1 (λ1re (y, x2))
FU|X=x2 (re (y, x2))

=
FU|X=x1 (λ1re (y, x2))
FU|X=x1 (re (y, x2))

FU|X=x1 (re (y, x2))
FU|X=x2 (re (y, x2))

. (1.3)

The first term on the right hand side of (1.3) converges to 0 as
y → +∞ by S3(ii), and the second term on the right hand side
of (1.3) is bounded by S3(iii). Combining this result with (1.2), we
obtain the conclusion. �

Proof of (ii). FromPart (i), it is sufficient to show that S3(i) implies
S3(i′). Pick any ϵ > 0. By S3(i), there exists ȳ ∈ R such that
[r (y, x1) /r (y, x2)] ∈ (λ − ϵ/2, λ + ϵ/2) for all y ≥ ȳ. This implies
infy≥ȳ [r (y, x1) /r (y, x2)] ∈ (λ − ϵ, λ + ϵ) for all y ≥ ȳ. Therefore,
S3(i′) is guaranteed. �

Proof of (iii). By Proposition 1 and Lemma 1 of EK,

lim
y→+∞

F̄Y |X=x1(y)
F̄Y |X=x2(y)

≤ lim
y→+∞

1
πnx2x2

FU|X=x1 (re (y, x1))
FU|X=x2 (re (y, x2))

≤ lim
y→+∞

1
πnx2x2

FU|X=x1 (re (y, x2))
FU|X=x2 (re (y, x2))

where the last inequality follows fromS2,which implies re (y, x1) ≤

re (y, x2). Therefore, S1(ii) and S3(iii) imply the conclusion. �

Proof of (iv). We first argue that S1 and S3(i′) are not sufficient for
S2. Let x1 = 1, x2 = 3, and

r (y, x) =


−yx − x for y ∈ (−∞, 0)
−y

1
x − x for y ∈ [0, +∞).

2 Note that S1 is sufficient for Proposition 1 and Lemma 1 of EK.
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