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h i g h l i g h t s

• Parameter estimation of ACD models using the Estimating Functions (EF) approach.
• Study the finite sample behaviour of corresponding new estimators.
• Investigate the asymptotic behaviours of these proposed estimators.
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a b s t r a c t

This paper investigates the Estimating Function method in the context of ACD modelling and appraises
the properties of these estimates. A simulation study is conducted to demonstrate that these estimates
are more efficient than the corresponding ML and QML estimates.
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1. Introduction

In recent years with the rapid developments in computing
power and storage capacity, it is possible to record every single
transaction togetherwith its characteristics (such as price, volume,
etc.) in finance. The availability of these intraday datasets has aided
in evolving a new area of financial research based on high fre-
quency data analysis. A distinctive feature of intraday data is that
observations are irregularly time-spaced and these irregular time
intervals may convey important information. Motivated by these
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considerations, Engle and Russell (1998) developed the class of Au-
toregressive Conditional Duration (ACD) models for such irregular
spaced data. Engle and Russell’s ACD models show that they can
successfully illustrate the progression of time durations for heav-
ily traded or high frequency stocks. In the ACD specification, the
mean of the distribution of inter-trade durations is assumed to de-
pend on past durations.

In Engle and Russell’s study of the unexplained structure in
ACD residuals for the International Business Machines (IBM) stock
they found evidence supporting the existence of nonlinear effects
of recent durations on the conditional mean. In particular, these
effects seem to be lower than the ones predicted by the linear
specification for both very long and very short durations.

Following the findings of Engle and Russell (1998), several
substantive extensions to the basic model with nonlinear spec-
ifications for studying the behaviour of irregularly time-spaced
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financial data have been put forward. These extensions are aimed
at providing some additional flexibility to the original ACD model
so that some of its empirical and statistical drawbacks can be ad-
dressed. These extensions include Bauwens andGiot’s (2000) Loga-
rithmic ACD (Log-ACD) model, Dufour and Engle’s (2000) Box–Cox
ACD (BCACD) model and Exponential ACD (EXACD) model, and
Bauwens and Veredas (2004) Stochastic Conditional Duration
Model. A good review of the various ACD models can be found in
Pacurar (2008).

Another issue in ACD modelling is the choice of a suitable dis-
tribution for the errors. Engle and Russell (1998) used the the-
ory of monotonic hazard functions such as the Exponential and
Weibull distributions and successfully applied these to model the
data on transactions of IBM stocks. Due to the fact that these distri-
butions have restrictions andweak performances in practice,many
authors have proposed a number of alternative flexible distribu-
tions in applications such as the Burr distribution (Grammig and
Maurer, 2000), Generalized F distribution (Hautsch, 2001) and the
Generalized Gamma distribution (see, Lunde, 1999 and Bauwens
et al., 2004).

The most common methods of parameter estimation for ACD
models are the Maximum Likelihood (ML) and Quasi Maximum
Likelihood (QML) methods. Engle and Russell (1998) use the ML
method to estimate the parameters of ACD models. Also see
Bauwens and Giot (2000), and Dufour and Engle (2000) for details.
Applications of ACD models are discussed by Allen et al. (2008,
2009) using the QML. These methods do not work well unless we
can identify the distribution of the error.

In this paper, we use the theory of Estimating Function (EF) as
an alternative method in the parameter estimation of nonlinear
specifications and various popular distributions of errors including
BCACD(p, q) and EXACD(p, q) models with Exponential, Weibull
and Generalized Gamma (G.Gamma) distributions. This EFmethod
has been successfully applied inmany time seriesmodels including
the class of ACD models. For example, David and Turtle (2000) ap-
plied the EF method in the context of autoregressive conditional
heteroscedasticity (ARCH) models. Peiris et al. (2007) compared
the performance of the EF and ML estimates of basic ACD mod-
els with linear specifications using a large scale simulation study.
Pathmanathan et al. (2009) have obtained further simulation re-
sults based on different non-negative distributions for errors. Allen
et al. (2012) considered the class of ACD models with errors from
the standard Weibull distribution to develop the EF estimation
procedure.

The remainder of this paper is organized as follows. Section 2
reviews the general class of ACD models including BCACD(p, q)
and EXACD(p, q) models. Section 3 discusses the methodologies
adopted for assessing estimating performances, namely the EF ML
and QML methods. Section 4 illustrates the parameter estimation
results. Section 5 concludes with some significant remarks.

2. A review of general ACD(p, q) models

Let ti be the time of the i-th transaction and let xi be the i-th
adjusted duration such that xi = ti − ti−1. Let

ψi = E[xi | xi−1, xi−2, . . . , x1] = E[xi | Fi−1], (1)

where Fi−1 is the information set available at (i − 1)-th trade.
Then, the basic ACD model for the variable xi is defined as

xi = ψiεi, (2)

where εi is a sequence of independently and identically distributed
(i.i.d.) non-negative random variables with a known density f (·)
and εi is independent of Fi−1.

This paper considers the following ACD specifications based
on BCACD(p, q) and EXACD(p, q) due to Dufour and Engle (2000).

They have discussed twomain drawbacks of linear ACD or LINACD
(p, q) models with constraints on the parameters to ensure non-
negative durations and the assumption of linearity being inappro-
priate in many applications.

Now consider the following nonlinear ACD specifications:

(i) BCACD(p, q) : lnψi = ω +

p
j=1

αjε
δ
i−j +

q
j=1

βj lnψi−j, (3)

where ω, αj, βj and δ are parameters.

(ii) EXACD(p, q) : lnψi = ω +

p
j=1


αjεi−j + δj |εi−j − 1|


+

q
j=1

βj lnψi−j, (4)

where ω, αj, βj and δj are parameters.
Themain problem that remains is the estimation of parameters.

With that view in mind Section 3 reviews the EF, ML and QML
estimation methods for ACD modelling.

3. Parameter estimation

This section considers the estimation of parameters using the
EFmethod and compares the results via theML and QMLmethods.

3.1. The EF method

Let {x1, x2, . . . , xn} be a discrete-time stochastic process andwe
are interested in fitting a suitable model based on this sample of
size n. Let Θ be a class of probability distributions F on Rn and
θ = θ(F), F ∈ Θ , be a vector of real parameters.

Suppose that the real valued function hi(·) of x1, x2, . . . , xi and
θ satisfy

Ei−1,F [hi(·)] = 0, (i = 1, 2, . . . , n, F ∈ Θ) (5)

and

E(hihj) = 0, (i ≠ j) (6)

where Ei−1,F (·)denotes the expectationholding the first i−1values
x1, x2, . . . , xi−1 fixed, Ei−1,F (·) ≡ Ei−1, EF (·) ≡ E(·)(unconditional
mean) and hi(·) = hi.

Any real valued function g(x; θ), of the random vector x =

{x1, x2, . . . , xn} and the parameter θ, that can be used to estimate
θ is called an estimating function. Under standard regularity
conditions (see e.g. Godambe, 1985), the function g(x; θ) satisfying
E[g(x; θ)] = 0 is called a regular unbiased estimating function.
Following Godambe (1960) and Godambe and Thompson (1978,
1984), an optimal estimate of θ must satisfy the following:

(i) the values of g(x; θ) are clustered around 0, as much as possi-
ble (i.e. E[g2(x; θ)] should be as small as possible);

(ii) it is desirable that E[g(x; θ + δθ)], δ > 0, should be as far
away from 0 as possible. This is conveniently translated as
E


∂g(x;θ)
∂θ


should be as large as possible.

Therefore, among all regular unbiased EFs g(x; θ), g∗(x; θ) is said
to be optimum if

E[g2(x; θ)]


E


∂g(x; θ)

∂θ

2

(7)

is minimized for all F ∈ Θ at g(x; θ) = g∗(x; θ). An optimal esti-
mate θ is obtained by solving the optimum estimating equation(s)
so that g∗(x; θ) = 0.
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