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a b s t r a c t

Estimating binary choice models with endogeneity is of considerable importance in microeconometrics.
The leading control function approachdoes not applywhen the endogenous variable is binary.Wepropose
a multi-stage estimation procedure for a heteroscedastic binary choice model with an endogenous
dummy under a joint conditional symmetry restriction, which allows us to overcome several drawbacks
associated with the existing estimators.
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1. Introduction

Estimating binary choice models with endogeneity is of con-
siderable importance in applied microeconometrics. For example,
evaluating the impact of job training upon subsequent employ-
ment status often involves estimating a model like

y = I

c0 + x′β0 + dα0 > u1


, (1.1)

d = I

z ′γ0 > u2


. (1.2)

In (1.1)–(1.2), y is the binary indicator of employment status,which
relies on a px-dimensional vector x of observable characteristics
and a binary indicator d of training reception. d is further de-
termined by a pz-dimensional vector of instruments z through a
linear index z ′γ0. d is generally endogenous due to possible correla-
tion between unobserved error terms u1 and u2. c0 is the intercept
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term and the slope coefficients (β0, α0) are the parameters of cen-
tral interest.1 There also exist many other empirical fields where
model (1.1)–(1.2) may be useful. For example, the model is used
by Loureiro et al. (2010) to examine intergenerational transmis-
sion of smoking habits, where y represents the smoking indicator
of a teenager and d represents the smoking indicator of his/her fa-
ther ormother. In their study, parental smoking indicator d is likely
to correlate with the error term u1 because both teens and their
parents share unobservable preferences such as attitudes towards
risk, health consciousness and genetic traits.

As themaximum likelihood-basedmethod is notorious for typ-
ically delivering inconsistent estimate if the parametric form of the
error distribution is misspecified, recent literature on semipara-
metric method focuses on

√
n-consistent estimation of the struc-

tural parameters without requiring parametric specification of the
error distribution. When the endogenous variable is continuous,
one may follow Blundell and Powell (2004) and Rothe (2009) to
employ a control function approach to estimate the model. How-
ever, the leading control function approach is no longer applicable

1 Throughout the paper, any parameter with subscript zero denotes the true
parameter that generates the data.
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when the endogenous variable is discrete, thus complicating the
estimation to a great degree. Recently, Yildiz (forthcoming) pro-
poses for model (1.1)–(1.2) a multi-stage estimation procedure,
that does not rely on any parametric assumption of the error dis-
tributions. To our best knowledge, this seems to be the only dis-
tribution free estimator that can deal with the current model to
date. However, Yildiz’s estimation strategy, which employs Pow-
ell et al. (1989)’s density weighted average derivative estimate in
constructing his first and second stage estimator, heavily relies on
the independence between error term and the exogenous regres-
sors, thus essentially ruling out the case with heteroscedastic error
terms. While deviation from normality may have serious conse-
quence for commonly used parametric estimators such asMLE, ev-
idence also shows that these estimators aremore severely affected
by heteroscedasticity of unknown form than by nonnormality.

In this note, we propose an alternative multi-stage estimation
procedure that is not only robust against deviation from normality
of error distributions, but also allows for general forms of
heteroscedasticity. Specifically, instead of assuming that the
exogenous regressors are independent of the error terms, we
impose a joint conditional symmetry restriction on the error
distribution. As will be shown in this note, our estimator enjoys
several additional advantages. First, whereas the intercept term is
not identified under the independence restriction, our conditional
symmetry restriction permits

√
n-consistency estimation not

only for the slope coefficients on both exogenous and dummy
endogenous regressors, but also for the intercept term as well.2
Second, except for a mild exclusion restriction, our estimator
allows for a general form of heteroscedasticity in the error term.

2. The estimator

Let w be the vector of distinct components in the regressor
vector (x, z). Instead of assuming the independence between
(u1, u2) andw, we assume that the distribution of (u1, u2) depends
on w only through w2, a proper subvector of w. We mean by w2
being a proper subvector ofw that there is at least one component
of x and z that is not contained in w2. Here we have imposed a
mild exclusion restriction on the form of heteroscedasticity in that
heteroscedasticity is only associated with a subset of the regressor
vectorw. Chamberlain (1992), Chen and Zhou (2010) have adopted
a similar heteroscedasticity exclusion restriction. Throughout the
paper, we make the following assumption.

Assumption 1a. The joint distribution of (u1, u2) relies on w only
through w2, and is assumed to be symmetric around the origin
conditional onw2, that is,

fu1u2(v1, v2|w) = fu1u2(v1, v2|w2) = fu1u2(−v1,−v2|w2), (2.1)

where fu1u2(·, ·|w) is the probability density function of (u1, u2)
conditional onw.

This symmetry condition has been maintained as a common
semiparametric restriction by Chen (1999a,b), Honore et al. (1997),
Newey (1991) and Powell (1986), to name only a few. As an
example, assume for the moment that w2 is scalar and ϵ is any
symmetric distribution independent ofw2. Then (u1, u2)withu1 =

w2ϵ and u2 = 0.5 · u1 satisfy (2.1).3 Note that although (2.1) has
imposed a shape restriction on the error distributions relative to

2 Identification of the intercept term under symmetry has been mentioned in
Section 4.3 of Yildiz (forthcoming). However, Yildiz didn’t consider the symmetry
conditional on a set of exogenous regressors as in this note.
3 However, our conditional symmetry assumption is not satisfied when,

e.g., (u1, u2, w2) are jointly normal.

the independence assumption required by Yildiz (forthcoming),
neither assumption is stronger than the other, as (2.1) does allow
the joint distribution of (u1, u2) to depend on w2. Also, there
is some evidence (see, e.g. Powell, 1986; Honore et al., 1997)
that symmetry-based estimators possess certain robustness to
the violation of the symmetry assumption. Overall, we make this
tradeoff to free ourselves from the strong requirement of the
independence between error term and regressors.

2.1. Stage 1: estimation of γ

The
√
n-consistent estimate of the index coefficients in a

single equation binary choice model (e.g. (1.2)) under conditional
symmetry restriction is available from Chen (2005), Chen and
Zhou (2010). Without loss of generality, we make the following
assumption in parallel with Assumption 6 in Chen and Zhou
(2010):

Assumption 2. There exists some
√
n-consistent estimator γn of

γ0, which permits the following asymptotic linear representation:

√
n (γn − γ0) =

1
√
n

n
i=1

ψi + op(1),

for some ψi with Eψi = 0 and E∥ψi∥
2 < ∞.

2.2. Stage 2: estimation of β

It is well known that for binary choice models the coefficients
can be identified only up to scale and the regressors should
contain at least one component whose probability distribution
conditional on the remaining components is absolutely continuous
with respect to the Lebesgue measure. For these reasons, rewrite
the outcome Eq. (1.1) with a minor abuse of notation as

y = I

x0 + c0 + x′

1β10 + x′

2β20 + dα0 > u1

, (2.2)

where x0 has a continuous probability distribution conditional
on the remaining components (x1, x2) and the coefficient on x0
has been normalized to unity for convenience. c0 is the constant
term, x1 and x2 are px1 and px2-dimensional regressor vectors
respectively such that w2 contains x2 as its components with
px1 + px2 + 1 = px. Let β0 = (1, β ′

10, β
′

20)
′. In the presence of

heteroscedasticity in an unknown form, it is straightforward to
see that Powell et al. (1989)’s method no longer gives a consistent
estimate of the slope coefficients β0. To overcome this difficulty,
we build our identification strategy upon two rank conditions,
that generalize the insight from Abrevaya et al. (2010) and exploit
the conditional symmetry restriction (2.1). Denote λ1(a, b, w2) =

Pr(a > u1, b > u2|w2) and λ2(a, b, w2) = Pr(a > u1, b ≤ u2|w2).

Assumption 1b. Both λ1(a, b, w2) and λ2(a, b, w2) are strictly
increasing in a for any given b andw2.

Lemma 1 (Rank Condition 1). Under Assumption 1b, for any pair of
observations indexed i and j,

E

yi − yj|wi, wj, w2i = w2j, z ′

iγ0 = z ′

jγ0

> 0

if and only if

xi − xj

′
β0 > 0.

Proof. It follows from (1.1)–(1.2) and the assumption that the
distribution of (u1, u2) relies onw only throughw2 that

E(y|w) = Pr

x′β0 + c0 + α0 > u1, z ′γ0 > u2|w2


+ Pr


x′β0 + c0 > u1, z ′γ0 ≤ u2|w2


. (2.3)
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