
Economics Letters 119 (2013) 233–237

Contents lists available at SciVerse ScienceDirect

Economics Letters

journal homepage: www.elsevier.com/locate/ecolet

A simple test for the equality of integration orders
Javier Hualde ∗

Department of Economics, Universidad Pública de Navarra, 31006 Pamplona, Spain

h i g h l i g h t s

• We propose a test for the equality of integration orders.
• The test is valid in stationary/nonstationary, invertible/noninvertible circumstances.
• Unlike many other methods, our proposal is valid under cointegration.
• The test is simple to compute and it enjoys standard asymptotics.
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a b s t r a c t

A necessary condition for two time series to be nontrivially cointegrated is the equality of their respective
integration orders. Thus, it is standard practice to test for order homogeneity prior to testing for
cointegration. Tests for the equality of integration orders are particular cases ofmore general tests of linear
restrictions among memory parameters of different time series, for which asymptotic theory has been
developed in parametric and semiparametric settings. However, most tests have been just developed in
stationary and invertible settings, and, more importantly, many of them are invalid when the observables
are cointegrated (because they involve inversion of an asymptotically singular matrix). We propose a
general testing procedure which does not suffer from this serious drawback, and, in addition, it is very
simple to compute, it covers the stationary/nonstationary and invertible/noninvertible ranges, and, as we
show in a Monte Carlo experiment, it works well in finite samples.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Recently, the concepts of fractionally integration and cointe-
gration have raised the attention of numerous researchers. This
new framework introduces additional challenges, because, in prac-
tice, those (possibly noninteger) integration orders are unknown,
so the traditional way of testing for cointegration, based on ideas
like the ones of Dickey and Fuller (1979) or Phillips and Perron
(1988), needs to be revised. For example, given two observable se-
ries, yt , xt , t = 1, . . . , n, a necessary condition for these processes
to be nontrivially cointegrated (so a linear combination of them
has a smaller order) is the equality of their respective integration
orders. Thus, it is standard practice to test for order homogene-
ity prior to testing for cointegration. Tests for the equality of inte-
gration orders are particular cases of more general tests of linear
restrictions among memory parameters of multivariate time se-
ries, which have been developedmainly assuming stationarity and
invertibility. In the parametric setting rigorous asymptotic theory
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has been developed by Heyde and Gay (1993) and Hosoya (1997).
In the semiparametric framework, under local assumptions, Wald
tests of linear restrictions on memory parameters have been pro-
posed for the stationary case by Robinson (1995a) and Lobato
(1999), whereas, additionally, results in Robinson (1995b) suggest
the use of Lagrange Multiplier and Likelihood Ratio tests (see Mar-
inucci andRobinson, 2001). These semiparametric tests enjoy stan-
dard asymptotics (feature also shared by the parametric ones), but
suffer from a serious drawback, because they are invalid in case
there exists cointegration among the series. The reason is that the
test statistics involve inversion of an asymptotically singular ma-
trix. This problem was acknowledged by Marinucci and Robinson
(2001), and Robinson and Yajima (2002) offered a sensible solution
at cost of introducing an additional user-chosen number.

The present paper proposes a testing procedure for the
equality of integration orders of two fractionally integrated
processes. The test covers the stationary/nonstationary and
invertible/noninvertible ranges and it is valid irrespective of
whether the time series are cointegrated or not. In addition, its
computation just requires estimation of integration orders and
of the spectral density of the short memory input series which
originate the fractionally integrated processes at frequency zero.
Finally, assuming very mild conditions, our proposed test statistic
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enjoys standard asymptotics under the null hypothesis of equality
of orders.

In the next section we present our testing procedure, which
is rigorously justified in Appendix. Section 3 includes a Monte
Carlo study of finite-sample behavior and, finally, we conclude in
Section 4.

2. Testing for the equality of integration orders

Consider the bivariate process zt = (yt , xt)′, prime denoting
transposition, t ∈ Z , Z = {0,±1, . . .}, where

yt = ∆−δy {v1t1 (t > 0)} , yt = 0, t ≤ 0, (1)

xt = ∆−δx {v2t1 (t > 0)} , xt = 0, t ≤ 0, (2)

where 1 (·) is the indicator function,∆ = 1−L, L is the lag operator,
and formally

∆−α
=

∞
j=0

aj (−α) Lj, aj (α) =
Γ (j + α)

Γ (α)Γ (j + 1)
,

α ≠ 0,−1,−2, . . . ,

where Γ (·) represents the gamma function, taking Γ (α) = ∞ for
α = 0,−1,−2, . . . ,Γ (0) /Γ (0) = 1. We introduce

Assumption A. The process vt = (v1t , v2t)
′ , t ∈ Z , has

representation

vt =

∞
j=0

Ajεt−j,

∞
j=0

j
Aj
2 < ∞, (3)

with ∥·∥ denoting the Euclidean norm, where

(i) εt are independent and identically distributed vectors with
mean zero, positive definite covariance matrix Ω , E ∥εt∥

q <
∞, q > 2;

(ii) fii (0) > 0, i = 1, 2, where fij (0) is the (i, j) element of the
spectral density of vt , denoted by f (λ).

Assumption A seems satisfactorilymild, easily covering station-
ary and invertible autoregressive moving average systems. Un-
der this assumption, model (1), (2) implies that yt , xt , are Type II
fractionally integrated processes of orders δy, δx, respectively (see,
e.g. Robinson, 2005).

We introduce additional notation. For any sequence st and any
real c , let st (c) = ∆c {st1 (t > 0)}, and related to yt , xt in (1), (2),
for real c, d, define zt (c, d) = (yt (c) , xt (d))′. Finally, let ‘‘∼’’mean
‘‘exact rate of convergence’’.

Consider estimatorsδx,δy,f (0) of δx, δy, f (0) respectively, such
that the following condition holds.

Assumption B. As n → ∞,f (0)→p f (0) ,

and for κ > 0 and K < ∞,δx − δx ∼ n−κ , δy − δy ∼ n−κ ,

whereδx+ δy ≤ K . (4)

Assumption B, although unprimitive, is very mild. (4) is
innocuous if δx,δy, optimize over compact sets. If we assume
a parametric structure for vt ,

√
n-consistent estimators of the

orders of integration and f (0) are achievable by a multivariate
extension of the results in Robinson (2005), which extended the
results in Velasco and Robinson (2000) to cover our type of

processes. This rate is far better than needed, so we might be
content by assuming some weak conditions of smoothness of the
spectral density of vt around frequency zero, and estimate the
orders and f (0) semiparametrically. In particular, the estimators
of Robinson (1995a,b), justified by Robinson (2005) for our type
of processes, satisfy Assumption B. Also, given estimatorsδx,δy,
the nonparametric estimator of f (0) could be based on weighted
averages of the periodogram of the proxyvt = (yt(δy), xt(δx))′ of
vt .

We introduce our test statistic. Let hn > 0 be a sequence (whose
role will be clarified in Remark 2 below) such that

h−1
n + n−κhn → 0 as n → ∞. (5)

Definea =

1

nκ(δy −δx) > hn


, 1

nκ(δy −δx) ≤ hn

′
, (6)

and let

t =
(2πn)−1/2a′

n
t=1 zt

δx,δya′f (0)a1/2 , (7)

be the test statistic for H0 : δy = δx against the alternative
H1 : δy ≠ δx.

Theorem 1. Let (1), (2) and Assumptions A and B hold. Then

t →d N (0, 1) under H0; t ∼ n|δx−δy| under H1. (8)

Remark 1. As shown in the proof of Theorem 1,a→p a ≡ (1, 0)′

1

δy > δx


+ (0, 1)′ 1


δy ≤ δx


, sot is asymptotically equivalent

to (2πn)−1/2n
t=1 yt(δx)/f 1/211 (0), or, alternatively, to (2πn)−1/2n

t=1 xt(δy)/f 1/222 (0), depending on whether δy > δx or δy ≤ δx,
respectively. Thus, asymptotically,t is based on underdifferenced
processes under H1 (which is precisely the source of power),
whereas underH0 it is based on xt(δy) (although it could have been
equally based on yt(δx)with a slight modification of the definition
ofa).
Remark 2. It would have been natural to set hn = 0 in (6). In
this case, the test would have been based on yt(δx) ifδy > δx, or
xt(δy) ifδy ≤δx. However setting hn = 0 in (6) implies that under
H0 the limit ofa is random. This leads to a very complicated limit
dependence between the numerator and denominator of (7), so the
simple and neat result (8) would no longer hold.

Remark 3. If yt and xt were cointegrated, f (0)would be singular.
This is precisely the reason why the different semiparametric tests
considered in the literature are not valid with cointegration, as
they require inversion of a matrix which tends in probability to a
singular matrix (usually the equivalent to f (0) in a more general
framework). As can be inferred from Remark 1, singularity of f (0)
does not affect our test procedure as long as fii (0) > 0, i = 1, 2.

Remark 4. Although we just consider Type II processes, this was
just motivated by the uniform treatment of any value of δx
and δy that this definition allows, all results holding equally for
corresponding Type I processes (see Robinson, 2005).

Remark 5. We do not consider deterministic components in (1),
(2). However, there is no loss of generality here, because these
components can be eliminated by taking appropriate integer
differences of the observables and then applying our procedure to
the zero-mean differenced series. Taking integer differences might
lead to differenced processes with negative integration orders,
which, in particular, might fall in the noninvertibility region. This
complicates the likability of Assumption B, although procedures
like Hualde and Robinson (2011) or Hurvich and Chen (2000) are
appropriate in these circumstances.
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