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h i g h l i g h t s

• A new decomposition of total factor productivity (TFP) growth into own and spillover components is proposed.
• Our decomposition is applied using a spatial autoregressive frontier model.
• Production frontier analysis of 40 European countries for the period 1995–2008.
• The 2004 EU accession countries reduce the average efficiency of EU countries.
• Returns to scale spillovers make a positive contribution to a country’s TFP growth.
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a b s t r a c t

A new spatial decomposition of total factor productivity growth into direct (own) and indirect (spillover)
components is set out. We then apply the decomposition in the context of a spatial autoregressive
production frontier analysis of 40 European countries over the period 1995–2008.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Frontier modeling is a useful empirical framework with which
to analyze total factor productivity (TFP) growth. Typically, the
three components of TFP growth (own efficiency change, own
technological change, and own scale change) are computed from
a fitted frontier model. This approach is commonly used to analyze
TFP growth of countries (e.g. Kumar and Russell, 2002; Kumbhakar
andWang, 2005). However, it is increasingly being recognized that
economic growth and development are spatially dependent. In this
note, we extend the above standard TFP growth decomposition to
include direct (own) and indirect (spillover) components using a
spatial autoregressive production frontier model.1 We then apply

∗ Corresponding author. Tel.: +44 1509 222704; fax: +44 1509 223910.
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1 A direct component in our spatial TFP growth decomposition differs from that
in the standard non-spatial TFP growth decomposition. This is because our direct

our spatial TFP growth decomposition using data for 40 European
countries over the period 1995–2008.

2. The spatial autoregressive production frontier model

We apply the method proposed by Cornwell et al. (1990), in
which unit-specific effects are used to calculate time-varying effi-
ciencies, to amodel in which there is spatial autoregressive depen-
dence. We do not discuss spatial panel data models in detail here,
but for a comprehensive and up-to-date survey see Baltagi (2011).
Along the above lines, (1) represents a spatial autoregressive

components contain feedback effects, i.e. effects which pass through other units via
the spatial multiplier matrix and back to the unit which initiated the change. The
standard non-spatial TFP growth decomposition overlooks these feedback effects.
Our extension of the standard non-spatial TFP growth decomposition is based on
an indirect component being interpreted as a spillover to the ith unit from all the
other units in the sample.
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production frontier model:

yit = κ + αi + τt + TL (x, t)it + λ

N
j=1

wijyjt + zitφ + εit ,

i = 1, . . . ,N; t = 1, . . . , T . (1)
N is a cross-section of units; T is the fixed time dimension; yit is the
output of the ith unit; αi is a unit-specific fixed effect; τt is a time
period effect; TL (x, t)it represents the technology as the translog
approximation of the log of the production function, where x is
a vector of inputs; λ is the spatial autoregressive parameter; wij
is an element of the spatial weights matrix, W ; zit is a vector
of exogenous characteristics and φ is the associated vector of
parameters; and εit is an i.i.d. disturbance for i and t with zeromean
and variance σ 2.

W is a row-normalized (N × N) matrix of known positive
constants which describes the spatial arrangement of the cross-
sectional units and also the strength of the spatial interaction
between the units. All the elements on the main diagonal of W
are set to zero. λ is assumed to lie in the interval (1/rmin, 1),
where rmin is the most negative real characteristic root of W , and,
because W is row normalized, 1 is the largest real characteristic
root of W .2 We model the effects of time in (1) by, first, including
a time trend, t , and the associated quadratic and cross terms in the
translog function and, second, via time period effects to account for
common macroeconomic shocks.3

Weestimate (1) usingmaximum likelihood, and account for the
endogeneity of the spatial autoregressive variable and the fact that
εt is not observedby including the scaled loggeddeterminant of the
Jacobian transformation of εt to yt (i.e. T log |IN − λW |) as a term
in the log-likelihood function. Details of the estimation of (1) by
demeaning in the space dimension can be found in Elhorst (2009)
with the following caveat. Lee and Yu (2010) show that demeaning
in the space dimension to estimate a model such as (1) results
in a biased estimate of σ 2 when N is large and T is fixed, which
we denote σ 2

B . Following Lee and Yu (2010), we correct for this
bias by replacing σ 2

B in the variancematrix with the bias-corrected
estimate of σ 2, σ 2

BC = Tσ 2
B /(T − 1), which changes the t-values.4

We calculate time-varying efficiencies using the ‘modifying’ es-
timation procedure (Cornwell et al., 1990). Summarizing, using the
residuals from (1), εit , we estimate εit = θit+ρit2+eit , where eit is
an i.i.d. disturbance.We then use the θi and ρi parameters together
with the αi parameters, which are retrieved using the estimate of
(1), to calculate the technical efficiencies using (2). In each period,
it is assumed that the most efficient unit lies on the frontier:

TEit = exp


αi + θit + ρit2

− max

i


αi + θit + ρit2


. (2)

3. Marginal effects and spatial TFP growth decomposition

LeSage and Pace (2009) demonstrate that for a model such
as (1) the coefficients on the explanatory variables cannot be

2 Furthermore, (IN − λW ) is taken to be non-singular for all values of λ in
the parameter space. It is also assumed that the row and column sums of W
and (IN − λW ) are bounded uniformly in absolute value. This limits the spatial
correlation to a manageable degree.
3 We thank an anonymous referee for proposing that we also include time period

effects.
4 We do not also demean in the time dimension even though we include

time period dummies. This is because it would eliminate the time trend and the
associated quadratic term, which we want to retain because of their role in the TFP
growth decomposition. Not demeaning in the time dimension does not create an
incidental parameter problem in the application, as the sample only spans 14 years.
In the application, when estimating the corresponding non-spatial model using
standard software, a small number of time period dummies are dropped by the
software for reasons of collinearity. We drop the same time period dummies when
fitting the spatial frontier models.

interpreted as elasticities. This is because the marginal effect of
an explanatory variable is a function of the spatial autoregressive
variable. LeSage and Pace (2009) therefore suggest the following
approach to calculate direct, indirect, and total marginal effects.
Stacking successive cross-sections, we can rewrite (1) as
yt = (IN − λW )−1 κιN + (IN − λW )−1 αN

+ (IN − λW )−1 τt ιN + (IN − λW )−1 Γtβ

+ (IN − λW )−1 ztφ + (IN − λW )−1 εt , (3)
where ιN is an (N × 1) vector of ones; αN is an (N × 1) vector of
fixed effects; Γt is an (N × K) matrix of stacked observations for
TL (x, t)t ; and β is a vector of translog parameters.

Differentiating (3) with respect to the kth variable in TL (x, t)t ,
Γk,t , yields the following vector of partial derivatives:


∂y

∂Γk,1
·

∂y
∂Γk,N


t

=


∂y1

∂Γk,1
·

∂y1
∂Γk,N

· · ·

∂yN
∂Γk,1

·
∂yN

∂Γk,N


t

= (IN − λW )−1

βk 0 · 0
0 βk · ·

· · · ·

0 0 · βk

 , (4)

where the product of the matrices on the far right of (4) is
independent of time. The main diagonal of this product consists of
direct effects, and all the non-diagonal elements of this product are
indirect effects. Since (4) yields different direct and indirect effects
on each unit, LeSage and Pace (2009) suggest reporting a mean
direct effect (average of the diagonal elements of the product of
matrices on the far right of (4)) and a mean indirect effect (in our
case the average row sum of the non-diagonal elements from the
same product). The direct effect which includes feedback effects
is the mean effect of changing an independent variable in a cross-
sectional unit on that unit’s dependent variable. The indirect effect
which we report is the mean change in the dependent variable for
one particular unit following a change in an independent variable
in all the other units. The mean total effect is the sum of the mean
direct and indirect effects. We calculate the t-statistics for the
mean effects directly by obtaining the standard errors using the
delta method.5

As noted by Kumar and Russell (2002), the standard three
components of productivity change ( ˙TFP) are change in own
technical efficiency (EC), own technical change (TC), and change
in own returns to scale (SC) ( ˙TFP = EC + TC + SC). We extend
this standard non-spatial decomposition of ˙TFP to include both
direct and indirect TC and SC components. By making use of
the quadratic identity lemma (Caves et al., 1982), the following
expression for ˙TFP with direct and indirect TC and SC components
can be obtained.
˙TFP it+1

= [ln TE it+1 − ln TE it ]  
EC

+ 1/2

ηtDirit+1 + ηtDirit

  
Direct TC

+ 1/2

ηt Indit+1 + ηt Indit

  
Indirect TC

+ 1/2


R

r=1


ηxDirr,it+1SF

Dir
it+1


+


ηxDirr,itSF

Dir
it


ln


xDirr,it+1/x

Dir
r,it


  

Direct SC

+ 1/2


R

r=1


ηxIndr,it+1SF

Ind
it+1


+


ηxIndr,itSF

Ind
it


ln


xIndr,it+1/x

Ind
r,it


  

Indirect SC

, (5)

5 We thank an anonymous referee for suggesting the delta method to compute
the t-statistics as an alternative to Monte Carlo simulation.
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