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h i g h l i g h t s

• We propose a method to generate flexible mixture distributions.
• The method is easy to implement.
• The method is useful for estimating models using simulation.
• We apply the method to estimate mixed logit models.
• We test it with good results in a simulation study and on real data.
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a b s t r a c t

We propose a method to generate flexible mixture distributions that are useful for estimating models
such as the mixed logit model using simulation. The method is easy to implement, yet it can approximate
essentially any mixture distribution. We test it with good results in a simulation study and on real data.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

This paper presents an easy yet powerful method for creating
a mixture distribution for a random parameter in an econometric
model that is estimated using simulation. Themethod is presented
using maximum simulated likelihood estimation of the mixed
logit model as an example, but can be applied in a wide range of
circumstances. The advantages of the method are that essentially
any distribution can be represented arbitrarily well, while imple-
mentation is very simple.

Consider amodel that specifies the likelihood P (y|x, β) of some
outcome y conditional on variables x and an unobserved random
parameter β having distribution F .1 Assuming that x and β are
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1 Therewill generally be other parameters to be estimated in the likelihood. They

are suppressed in the notation here as the focus lies elsewhere.

independent, the likelihood P (y|x)may be simulated given R inde-
pendent draws βr from F . This is the basis for estimation by simu-
lation (Train, 2003; McFadden, 1989), which can be applied when
the distribution F is considered as known.

Most applications of this method rely on the inversion method
for generating draws from F : if ur are draws from a standard uni-
form distribution, then F−1 (ur) are draws from F . In order to use
this method, it is necessary to compute the inverse of F explicitly.2

There are many situations where it is not desirable to impose
a specific functional form on F . Generally, this is the case when-
ever the choice of F has impact on the object of interest for the
investigation but there is no a priori reason to choose a particu-
lar F . It is particularly undesirable to impose a specific form on F
when F is the object of interest itself, e.g., when the purpose is to
estimate a distribution of willingness-to-pay. Then it is preferable

2 Devroye (1986) provides a comprehensive treatment of techniques for random
variable generation.
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if the shape of F can be estimated. This can be accomplished by the
method of sieves (see e.g. Chen, 2007; Gallant and Nychka, 1987),
also known as series estimators. It is however necessary to guaran-
tee that the approximation of F is actually a CDF and then it must
be inverted in order to generate random draws from F using the
inversion method.

Another idea is to approximate F−1 directly. Then inversion is
unnecessary. It is however still necessary to ensure that F−1 is
monotone, which might involve somewhat complicated restric-
tions on the deep parameters of F−1 in a series approximation.

The key insight of this paper is that approximating F or F−1 is
actually an unnecessary complication for the present purpose. All
that is required for simulating the likelihood is drawsβr from some
distribution F that depends on some deep parameters to be esti-
mated. The simulated likelihood is simply

1
R


r

P (y|x, βr) . (1)

It is not necessary that the draws βr are monotone functions of
standard uniform draws. It is not even necessary to know explicitly
the distribution of the draws βr in order to compute (1); the ability
to generate draws from the distribution is sufficient. Being able to
obtain the draws, it is always possible to estimate their distribu-
tion.

In this paper we take draws ur from some distribution and
transform them using a power series

f (u|α) =

K
k=0

αkuk (2)

to compute random draws βr = f (ur |α) that depend on deep pa-
rametersα = (α0, . . . , αK ) to be estimated. The randomdraws are
inserted into (1) and the resulting expression is very easy to im-
plement in software. For instance, if the model contains a term βx,
then that is replaced by

K
k=0 αk


xuk

r


. This is a convenient form,

since it is linear in deep parameters α that are multiplied by easily
computed variables xuk

r . In most cases the distribution of f (u|α) is
not easily derived analytically. The distribution is by construction,
however, very easy to simulate, which is all that is really needed.

A predecessor of our method is Fleishman (1978), who con-
siders the problem of generating random variables with prespec-
ified moments. He generates a random variable as a third-order
polynomial in a standard normal random variable and provides
formulae for the coefficients of the polynomial such that specific
values of the first four moments are matched by such a variable.
The present case is similar, except we are not concerned with
matching given moments, but estimate coefficients in order to
match a given dataset and may use polynomials of any degree. We
present results using both uniform and normal draws.

The following Section 2 presents some properties of the pro-
posed method. It will also be argued that essentially any distri-
bution can be approximated arbitrarily well by (2) by choosing a
sufficiently large number of parameters K . This section also dis-
cusses extension to multivariate random parameter distributions.
Section 3 provides simulation results that illustrate the ability of
the method to recover various true distributions from binary dis-
crete choice panel data. Section 4 presents an application to real
data and Section 5 concludes.

2. Some properties of the method

Let α = (α0, . . . , aK ) ∈ RK be a parameter vector and let u be
a random variable. Then β = f (u|α) =

K
k=0 αkuk is a random

variable and it is convenient for use as a random parameter. The
following proposition summarises a few properties of β .

Proposition 1. Let u follow a uniform distribution. Then the random
parameter β has compact support ranging between α0 and

K
k=0 αk,

either of which may be greatest; the mean is

Eβ =

K
k=0

αk

1 + k
,

and the m’th raw moment (m > 1) is

E

βm

=

K ,...,K
k1=0,...,km=0

m
i=1

αki

1 +

m
i=1

ki
.

The variance of β is

V (β) = E

β2

− (Eβ)2

=

K ,K
k=0,j=0

kjαkαj

(1 + k + j) (1 + k) (1 + j)
.

Proof. Immediate. �

Remark 1. It is straightforward (but quite tedious) to show that
with uniform u and K = 2, then it is possible to attain any skew-
ness while maintaining that Eβ = 0 and E


β2


= 1.

Remark 2. If the first K moments are to bematched, itmay be nec-
essary to includemore than K terms. The necessity of this has been
shown for a third-order polynomial in a standard normal random
variable (Headrick, 2002).

Remark 3. By the Weierstrass approximation theorem, the set of
functions


f (·|α) |α ∈ R(N)


uniformly approximates any contin-

uous function on the unit interval. This comprises all inverse CDF
of distributions that have densities.

Remark 4. Consistency of series estimators has been established
for a range of cases (see e.g. Geman and Hwang, 1982; Chen, 2007;
Bierens, 2008; Fosgerau andNielsen, 2010), but not formally for the
present. Consistency of the proposed estimator seemshighly likely,
meaning that the estimated distribution of β will become arbitrar-
ily close to the true distribution given a large enough dataset and
a correspondingly large value of K . For a fixed K , the standard re-
sults regarding consistency of maximum simulated likelihood ap-
ply (Newey and McFadden, 1994; Hajivassiliou and Ruud, 1993).

Remark 5. Given R i.i.d. draws βr from some distribution, its CDF
F can be estimated by

F (t) = E (1 {β ≤ t}) ≃
1
R


r

1 {βr ≤ t} .

As βr are the results of simulation, we are free to choose R and
hence it can be chosen to achieve any desired degree of precision
of the estimate of F .

2.1. Multivariate distributions

Themethod can be extended to allow for amultivariate random
parameter. The extension is straightforward if the random param-
eters are independent, so in the following we allow them to be de-
pendent.

One way to go is to combine the proposed method with a cop-
ula. Let c be the density of a bivariate copula function, i.e. a density
on the unit cube with uniform marginal distributions. A range of
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