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h i g h l i g h t s

• A simple Nash program for asymmetric Nash solutions is proposed.
• We generalize the Nash demand game analyzed by Rubinstein et al. (1992).
• We provide an axiomatic characterization of the class of asymmetric Nash solutions.
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a b s t r a c t

This article proposes a simple Nash program. Both our axiomatic characterization and our noncooperative
procedure consider each distinct asymmetric and symmetric Nash solution. Our noncooperative proce-
dure is a generalization of the simplest known sequential Nash demand game analyzed by Rubinstein
et al. (1992). We then provide the simplest known axiomatic characterization of the class of asymmetric
Nash solutions, in which we use only Nash’s crucial Independence of Irrelevant Alternatives axiom and
an asymmetric modification of the well-known Midpoint Domination axiom.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In an important paper, Harsanyi and Selten (1972) proposed and
axiomatically characterized the asymmetric (generalized) Nash so-
lutions. Kalai (1977) provided a much simpler axiomatic charac-
terization of these solutions by using three of the original axioms
of Nash (1950), namely Weak Pareto Optimality (WPO), Scale and
Origin Invariance (SOI) and Independence of Irrelevant alternatives
(IIA).

In a variation of Nash demand game considered in Rubinstein
et al. (1992), Player 1 makes a proposal s and Player 2 is free to
accept 1’s proposal, to continue negotiations even if he does not
accept 1’s proposal or to terminate negotiations. In case Player 2
rejects 1’s proposal, 2 is more likely to continue negotiations if 1’s
proposal is more to his liking. Player 2 announces his probability p
∈ [0, 1) to continue negotiations after he hears Player 1’s proposal
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and rejects it (clearly Player 1 too can calculate Player 2’s continua-
tion probability p). If Player 2 continues negotiations, Player 1 will
have to choose either the new proposals made by Player 2 or to
scale his original proposal down by p.

We first provide a simple generalization of the above game.
Our generalization conceptually separates the latter scale-down
scalar p and the continuation probability p in that they do not
have to be equal. Our game, however, still keeps a link between
them by making the former a function of the latter; each different
link between them in our game gives rise to a distinct subgame-
perfect equilibrium outcome which coincides with the outcome of
a distinct asymmetric (or symmetric) Nash solution.

We then provide an axiomatic characterization of the class of
asymmetric Nash solutions, in which we use only Nash’s crucial
Independence of Irrelevant Alternatives (IIA) axiom and an asym-
metricmodification of thewell-knownMidpoint Domination (MD)
axiom.1

1 MD was proposed by Sobel (1981) and Moulin (1983) provided the simplest
axiomatic characterization of the (symmetric) Nash solution by using MD and IIA
only.

0165-1765/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.econlet.2013.04.026

http://dx.doi.org/10.1016/j.econlet.2013.04.026
http://www.elsevier.com/locate/ecolet
http://www.elsevier.com/locate/ecolet
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.econlet.2013.04.026&domain=pdf
mailto:nejat.anbarci@deakin.edu.au
mailto:econcjs@gmail.com
mailto:cjsun@deakin.edu.au
http://dx.doi.org/10.1016/j.econlet.2013.04.026


212 N. Anbarci, C.-j. Sun / Economics Letters 120 (2013) 211–214

Ours is a very simple Nash program2 because it provides (i) the
simplest known axiomatic characterization of the asymmetric
(generalized)Nash solutions axioms, and (ii) a noncooperative pro-
cedure that is a generalization of the simplest sequential Nash de-
mand game analyzed by Rubinstein et al. (1992).

2. Nash demand game(s) and the Nash solution(s)

Nash (1950) provided the first axiomatic characterization of
a cooperative bargaining solution. Nash (1953) provided the first
noncooperative justification of his solution concept by using his
own (Nash) demand game (NDG). In that game, two players simul-
taneously make demands; each player receives the payoff he/she
demands if the demands are jointly feasible, and nothing other-
wise. NDG has a major downside, however: every point on the
Pareto frontier is a Nash equilibrium outcome. Nash (1953) himself
tried to rectify this problem by utilizing a ‘‘smoothing’’ approach in
which with some positive probability, incompatible demand com-
binations did not lead to zero payoffs. This smoothing approach
uniquely provided non-cooperative foundations for the Nash solu-
tion as the above-mentioned probability tends to zero; however, it
was not deemed reasonable by game theorists and several alterna-
tives have been proposed (Luce and Raiffa, 1957; Schelling, 1960).

In Carlsson (1991), the set of feasible payoffs is known to both
players, but their actions are subject to some errors; in addition,
unlike in the NDG, if players make demands which do not exhaust
the available surplus, the remainder is distributed according to an
exogenously fixed rule. In the limit as the noise vanishes, the equi-
libriumoutcome converges to one of the asymmetric Nash solution
outcomes. The rule about the proportion of the unclaimed surplus
that is supposed to go to each of the players determineswhich par-
ticular asymmetric Nash solution outcome will be obtained.

Howard (1992) proposed a one-shot (multiple-stage) noncoop-
erative foundation for the (symmetric) Nash solution, which was
later significantly simplified by Rubinstein et al. (1992), which was
alluded to in the Introduction briefly and will be discussed inmore
detail later.

Binmore et al. (1986) showed that as the time between alter-
nating offers by players in the Rubinstein (1982) bargaining game
tends to zero, the unique subgame perfect equilibrium outcome
corresponds to one of the asymmetric Nash solutions, depending
on the relative discount factors of the players. Kultti and Vartiainen
(2010) generalize Binmore et al. (1986); they show that differen-
tiability of the payoff set’s Pareto frontier is essential for the con-
vergence result if there are at least three players.

3. Asymmetric Nash solutions: a simple Nash program

A two-person bargaining problem is a pair (S, d), where S ⊂ R2

is the set of utility possibilities, and d ∈ S is the disagreement
point, which is the utility allocation that results if no agreement
is reached by the two parties. It is assumed that (1) S is compact
and convex, and (2) x > d for some x ∈ S.3 Let Σ be the class of all
two-person problems satisfying (1) and (2) above. Define IR(S, d)
≡ {x ∈ S|x ≥ d} and WPO(S) ≡ {x ∈ S|∀x′

∈ R2, with x′ >
x ⇒ x′

∉ S}. A solution is a function f : Σ → R2 such that for
all (S, d) ∈ Σ, f (S, d) ∈ S. The asymmetric Nash solution with

2 The Nash program attempts to bridge the gap between the cooperative (ax-
iomatic) and non-cooperative (strategic) strands of game theory by providing
non-cooperative procedures that yield cooperative solutions’ outcomes as their
equilibrium outcomes. See Serrano (2008) more on the Nash program.
3 Given x, y ∈ R2, x > y if xi > yi for each i, and x ≥ y if xi ≥ yi for each i and

xi > yi for some i.

weight α ∈ (0, 1),Nα , selects Nα(S, d) = argmax{(x1 −d1)α(x2 −

d2)1−α
|x ∈ IR(S, d)} for each (S, d) ∈ Σ .4

For simplicity in our noncooperative analysis let us normalize d
such that d = (0, 0).

Consider the following Nash demand game proposed by
Rubinstein et al. (1992):

Stage 1. Player 1 proposes a division s ∈ S.
Stage 2. Player 2 proposes an alternative divisions ∈ S and a

probability p ∈ [0, 1].
Stage 3. The game continues with probability p and terminates

at (0, 0) with probability 1 − p.
Stage 4. Player 1 chooses betweens and ps.
In the Introduction, we gave an intuitive description of this

game. We can add the following explanation of how the equilib-
rium is obtained. Observe that at Stage 4, ps ands depend on 1’s
initial proposal s. Player 2 will reciprocate with a higher continu-
ation probability p and with a more favorable ps as well as a more
favorable counter-offers for Player 1, if 1’s initial proposal is more
favorable for 2. On the other hand, the less s is to 2’s liking, the
lower ps and the less favorables are for Player 1. Thus, if at Stage 1
s is less to 2’s liking, at Stage 2 Player 2 will continue negotiations
with a lower probability p and force Player 1 to choose between
worse new alternativess and ps at Stage 4.

In turn, Player 1 can avoid all of this and obtain Player 2’s im-
mediate acceptance of s if s is above some particular threshold. The
setup is symmetric. This particular threshold for s would be the
same if players reversed roles, i.e., if Player 2 instead of Player 1
started the procedure by proposing s.

Observe that by proposing a low p, Player 2 is potentially pun-
ishing himself as well since the game will continue with a lower
probability. But once Player 2 continues negotiations, the punish-
ment by the scalar p pertains primarily to Player 1whichwill make
Player 1 settle fors instead. But since the continuation probability
p at Stage 2 and the scalar p at Stage 4 are the same, Player 2 must
pick a lower continuation probability p in order to name a lower
scalar p to punish primarily Player 1 (who does not care about the
scaling down of Player 2’s payoff s2 in s, but only cares about the
scaling down of his own payoff s1 in s).

Note that in the above game by Rubinstein et al. (1992) there is
no reasonwhy the continuation probability p proposed by Player 2
as well as the fraction p of s proposed by Player 2, that Player 1 has
to choose againsts in Stage 4 have to be equal. As a matter of fact,
these two p’s pertain to two totally different things. The former is
the probability withwhich Player 2will continue negotiations, and
the latter is a proposed fraction of the payoff s by 2.

Consider the following variation of the above Nash demand
game, which deliberately separates the continuation probability
p and the fraction of payoff s (while still keeping a link between
them):

Stage 1. Player 1 proposes a division s ∈ S.
Stage 2. Player 2 proposes an alternative divisions ∈ S and a

probability p ∈ [0, 1].
Stage 3. The game continues with probability p and terminates

at (0, 0) with probability 1 − p.
Stage 4. Player 1 chooses betweens and qs, where q = pθ and

θ ∈ (0, ∞).

We call this θ-weighted Nash demand game. Note that when
q = p, then this game boils down to the original Rubinstein et al.
game. The use of this more general form for q in Stage 4 suggests
that, if there is a need to link q and p, then this link need not always
be in the strict form of q = p.

4 Observe that each Nα(S, d) is strongly Pareto optimal.
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