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h i g h l i g h t s

• This paper examines the role of approximate factors in forecasting future realized volatility.
• We identify the discontinuous components using the jump tests before applying factors.
• We extend the factor models to the derivation of our realized measure.
• We relate the common component to unobservable financial characteristics.
• Our model outperforms the currently available approaches.
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a b s t r a c t

There is a growing literature on the realized volatility (RV) forecasting of asset returns using high-
frequency data. We explore the possibility of forecasting RV with factor analysis; once considering the
significant jumps. A real high-frequency financial data application suggests that the factor based approach
is of significant potential interest and novelty.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Recently, there has been increasing interest in forecasting
methods that utilize large, high frequency data sets. Andersen
and Bollerslev (1998), Andersen et al. (2003), Barndorff-Nielsen
and Shephard (2002) (termed BNS henceforth), among others,
advocated the use of nonparametric realized volatility (RV).
The consistency of the RV as an estimator is violated by the
presence of the market microstructure noise (henceforth ‘noise’)
which emerges due to market frictions. Another backdrop is
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that the nonparametric RV literature has concentrated less on
distinguishing jump from non jumpmovements. Corsi et al. (2010)
reveal that dividing volatility into jumps and continuous variation
yields a substantial improvement in volatility forecasting.

There is an alternative way of looking at these problems. The
limitations of the traditional procedures motivate our diverse
approach for measuring and forecasting the realized equity return
volatility. We apply the methodology of approximate factor
modeling on the nonparametric RV and also on the realized
bipower variation (BV) (Barndorff-Nielsen and Shephard, 2004)
when it is required after separately measuring the continuous
sample path variation and the discontinuous jump part of
the quadratic variation (QV) process. Factor methods are very
appealing and extensively used for forecasting; providing a
theoretical device for summarizing large data setswithout running
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into degrees of freedom problem, while taking into account the
marginal benefits that increasing information brings to forecasting.
As argued by Ludvigson and Ng (2009), the fluctuations and
comovements of a large number of economic and financial
variables are produced by a handful of observable or unobservable
factors, which in this case represent the omitted unobservable
factors in the noise. Our new factor-based realized volatility model
(FB-RV-J) fits well for large dimensional panels.

2. Theory

The dynamics of the logarithmic price process, pt , is usually
assumed to be a jump-diffusion process of the form:
dpt = µtdt + σtdWt + dJt (1)
where µt denotes the drift term with a continuous and locally
bounded variation, σt is the diffusion parameter and Wt is a
standard Brownianmotion. Jt is the jump process at time t , defined
as Jt =

Nt
j=1 ktj where ktj represents the size of the jump at time tj

and Nt is a counting process, representing the number of jumps up
to time t . The QV of the price process up to a certain point in time
t is:

QVt =

 1

0
σ 2
s ds +

Nt
j=1

k2tj (2)

where
 1
0 σ 2

s ds = IVt is the integrated variance or volatility.
Thus, QV has two parts; the diffusion component and the jump
component. The two components have a different nature and
should be separately analyzed andmodeled. The IV is characterized
by persistence, whereas jumps have an unpredictable nature.

Let the interval [0, t] be split into n equal subintervals of length
m. The jth intra-day return rj on day t is defined as rj = pt−1+jm −

pt−1+(j−1)m. QVt can be estimated by the realized volatility, or
variation, (RVt ), defined as (Andersen and Bollerslev, 1998):

RVt =

n
j=1

r2j
p

−→ QVt , form −→ 0 (3)

where
p

−→ stands for convergence in probability. Hence, in the
absence of discontinuities and noise the RVt is consistent for the
IVt . Most of the jump detection procedures are based on the
comparison between RVt and a robust to jump estimator. We need
to highlight that none of these procedures can test for the absence
or presence of jumps in the model or the data generating process.
Hence, it is difficult to judge whether the realization of the process
is continuous or not, within a certain time interval or at a certain
moment without a jump test. We turn now to the jump detection
methods.

2.1. Jump tests

We use two tests, the adjusted ratio statistic of Barndorff-
Nielsen and Shephard (2006) and the Lee and Mykland test (Lee
and Mykland, 2008, termed LM henceforth), in order to check
whether the two tests give consistent results. The BNS test tells
whether a jump occurred during a particular day and how much
the jump-squared contributes to the total realized variance, i.e. t
t−1 J

2
s dqs/RVt . The significant jump component of RVt is:Jt ≡ sign(rt) ×


(RVt − BVt) × It,(ZJ(bv)≥Φ

−1
α )

(4)

where BVt = 1.57
n

j=2

rj rj−1
. The BNS test can only identify

days that contain jumps. Hence, we use the ‘‘intra-day’’ LM
test which has the additional capability of identifying specific
returns that can be classified as jumps. We compute the LM test
statistics for every moment tj within a trading day and then
pick up the maximum statistic as the final test for that day
to determine whether both tests are consistently detecting the

presence of jumps. We effectively observe the consistency in both
methods.

2.2. Model

We now put the idea of separately measuring the jump
component and continuous variation. The contribution to the QVt
process due to the discontinuities in the underlying price process
can be estimated by:

RVt − BVt →

Nt
j=1

k2tj , for m −→ 0. (5)

Under this central insight and based on the above mentioned
test statistics and threshold requirements, we use BVt in our
analysis if we detect jumps in the data, otherwise RVt . So, Ct =

It,(ZJ(bv)<Φ
−1
α )

RVt + It,(ZJ(bv)≥Φ
−1
α )

BVt . This recognition motivates our
model. We propose that our nonparametric jump-free ‘realized’
measure can be decomposed into the common and idiosyncratic
components. We relate the common component to unobservable
financial characteristics, in particular, to cross sectional correlation
in pricing errors. For simplicity, we abbreviate our model FB-RV-J:

hit = α′

i ft + uit , t = 1, . . . , T and i = 1, . . . ,N (6)

where hit , is the realized measure, which is the element in the
tth row and ith column of the data matrix, T × N . ft is a
r-dimensional vector of common factors with t = 1, . . . , T and αi
refers to the ith row of the correspondingmatrix of factor loadings.
α′

i ft = Wit is the set of common components. In addition, uit
is the idiosyncratic component of hit . We assume that in general
the idiosyncratic terms are also weakly dependent processes with
mild cross-sectional dependence. αi and ft are clearly not jointly
identified since the factors can be pre-multiplied by an invertible
r × r matrix without having to make changes in the model.
The most crucial point here is that r ≪ N , so that substantial
dimension reduction can be achieved.

Factor identification and estimation of (6) is based on the set of
assumptions that are used in Bai and Ng (2002, 2006). Estimation
is divided into steps; we start with determining the number of
factors, which is followed by estimating them along with the
loadings. We estimate common factors in large panels by the
method of asymptotic principal components. This approach fits
well for the large panel of realized volatilities because it does not
suffer from the curse of dimensionality problem.

2.2.1. The number of factors
Wenow focus on checking robustness with respect to the num-

ber of factors and consider two approaches; Bai and Ng (2002)
information criteria forming a nonparametric method to deter-
mine the statistically important factors and the Onatski (2010) es-
timator described by an algorithm named edge distribution (ED).
Kapetanios (2010) suggests a method of the determination of the
number of factors using a bootstrap method, which is robust to
considerable cross-sectional and temporal dependence, but we
prefer to follow a simpler approach by Onatski (2010). As it is
shown in the empirical application, the two methods indicate that
there exist three common factors.

3. Empirical application

The data used in this paper are extracted and compiled from
the Trade and Quote (TAQ). We use the 50 largest capitalization
stocks included in the S&P500 index. The data consists of full record
transaction prices from January 2007 to December 2010. As in
Müller et al. (1993) linear interpolation of logarithmic five-minute
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