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h i g h l i g h t s

• The entire distribution of US city size is neither a Pareto one nor a lognormal one.
• Based on multiple tests, we find that the largest US cities are not Pareto distributed.
• Tests on real data and samples draws from a lognormal distribution yield similar Pareto tails.
• Bootstrap exercises show that the length of the Pareto tail shrinks by increasing sample size.
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a b s t r a c t

We question the claim that the largest US cities are Pareto distributed. We show that results of multiple
tests on real data are similar to those obtainedwhen the true distribution is lognormal, and largely depend
on sample sizes.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Recently, a lively debate has emerged on whether city size data
are better approximated by a Pareto distribution or by a lognormal
one (Eeckhout, 2004; Levy, 2009; Eeckhout, 2009; Malevergne
et al., 2011; Rozenfeld et al., 2011; Ioannides and Skouras, 2013).

Beside the specific intellectual curiosity the issue may raise,
there are broader theoretical reasons for investigating the matter,
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as competing models yield different implications. Indeed, while
the seminal paper by Gabaix (1999) predicts a Zipf’s law, Eeckhout
(2004) proposes an equilibrium theory to explain the lognormal
distribution of cities. This debate is hampered by the difficulty to
distinguish lognormal versus Pareto tails (Embrechts et al., 1997;
Bee et al., 2011). Moreover, the contention is partly based on the
difficulty of properly defining what a city is and, empirically, what
is the correct measure to use.1

1 This point is made in Rozenfeld et al. (2011), who propose a new methodology
to define cities based on microdata and a clustering algorithm that identifies a city
as the maximal connected cluster of populated sites. By applying this methodology
to both US and UK data, the authors find that a Zipf’s law approximates well the
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While early studies focus on the largest US Metropolitan
Statistical Areas (MSAs) only, recent contributions use data for
all the populated places of the US and other countries. By so
doing, Eeckhout (2004) shows that the size distribution of US
cities is a lognormal one, not a power-law one as previously
thought (at least since Zipf, 1949). A few years later, Levy (2009)
acknowledged that the body of the city size distribution is well
approximated by a lognormal distribution, but claimed that there
are significant departures in the upper tail. In particular, the top
0.6% of the distribution, i.e., theMSAs, appear to fit better a power-
law distribution. Eeckhout (2009) replied to these new findings
by highlighting potential problems associated with the procedures
used by Levy (2009) to identify the power-law tail.2 Recently
Malevergne et al. (2011) have suggested that the debate rests on
the small power of the tests employed by both Eeckhout (2004)
and Levy (2009). They claim the issue can be definitely settled by
adopting a better testing procedure, namely the uniformly most
powerful unbiased test of the exponential versus truncated normal
distribution in log-scale developed by del Castillo and Puig (1999).
Last, Ioannides and Skouras (2013) applied a switching model and
found that the distribution is lognormal in the body, but robustly
Pareto in the upper tail (top 5%).

We contribute to this debate by providing new evidence based
on a through analysis of the tail behavior of the distribution
and a number of counterfactual exercises. We conclude that the
power-law behavior of the upper tail is less robust than previously
claimed, due to the limited power of the available statistical tests
(Perline, 2005).

2. Data and methodology

2.1. Data

We analyze the distribution of US city size: information
is derived from the 2010 Census Data collected by the US
Census Bureau. The elementary unit of analysis, corresponding to
disaggregate data, is the population of 6 127259 census blocks.
These figures are then aggregated into administrative units that
represent populated places. As in Eeckhout (2004), we take
populated places as the unit of analysis at the aggregate level.3
Since it has been argued that the way cities are defined (i.e., the
way elementary units are aggregated) is not neutral with respect
to the shape of the resulting city size distribution, we perform our
analysis using both the administrative definition of cities and the
clusters identified by Rozenfeld et al. (2011).4

2.2. Testing for a power-law tail

Discriminating between power-law (Pareto) and lognormal
tail behavior is a difficult task. Although asymptotically the two
distributions are mathematically different, the convergence of
the lognormal to the asymptotic distribution is extremely slow
(Perline, 2005), so the difference may be very small, to the extent
that they are often practically indistinguishable for any finite
sample size.

distribution of 1947 US cities with more than 12,000 inhabitants (about 1000 cities
with more than 5000 inhabitants for the UK).
2 Specifically, Eeckhout (2009) suggests that the graphical procedure based on

visual inspection of a log–log plot introduces significant biases in the right tail of
the distribution.
3 In the rest of the paper, the terms city and populated place are used

interchangeably.
4 Data on clusters are available at http://lev.ccny.cuny.edu/∼hmakse/soft_data.

html.

Given these difficulties, several tests have been proposed: the
uniformly most powerful unbiased (UMPU) test developed by del
Castillo and Puig (1999) and used by Malevergne et al. (2011);
the maximum entropy (ME) test by Bee et al. (2011); and the test
proposed by Gabaix and Ibragimov (GI henceforth; see Gabaix and
Ibragimov, 2011).

The UMPU test is based on the fact that the logarithm of a
truncated lognormal distribution is truncated normal, and the
logarithm of a Pareto distribution is exponential. del Castillo
and Puig (1999) have shown that the likelihood ratio test for
the null hypothesis of exponentiality against the alternative of
truncated normality is given by the clipped sample coefficient of
variation c̄ = min{1, σ̂ /µ̂} of the logarithms of the observations,
where µ and σ are the parameters of the truncated normal. The
UMPU test only compares the null of a power-law distribution
against the alternative of a lognormal distribution, and rejects the
null hypothesis for small values of the coefficient of variation c .
However, the coefficient of variation does not uniquely identify
distributions with power-law tails. This implies that the UMPU
test works well (i.e., its power is high) in cases such as the
lognormal–Pareto mixture, namely when the data-generating
process is such that c ≥ 1 above the threshold that separates
the lognormal and the Pareto distributions and c < 1 below the
threshold (Bee et al., 2011). On the other hand, if the distribution
below the threshold is not a power-law one but nonetheless has
c ≥ 1, as happens, for example, for the Weibull distribution
with shape parameter equal to 1, the UMPU test is completely
unreliable. A case that illustrates this point is the aggregate city
size distribution studied below (see Section 3).

The ME approach entails maximizing the Shannon information
entropy under k moment constraints µi

= µ̂i (i = 1, . . . , k),
where µi

= E[T (x)i] and µ̂i
=

1
n


j T (xj)i are the ith theoretical

and samplemoments, n is the number of observations, and T is the
function defining the characterizing moment.5 The solution (that
is, the ME density) takes the form f (x) = e−

k
i=0 λiT (x)i . If T (x) = x,

the logarithm of the Pareto (i.e., the exponential) distribution is an
ME density with k = 1, whereas the logarithm of the lognormal
(i.e., the normal) distribution is an ME with k = 2. A log-likelihood
ratio (llr) test of the null hypothesis k = k∗ against k = k∗

+ 1 is
given by

llr = −2n
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i
−

k∗
i=0
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.

From standard limiting theory, the llr test is asymptotically χ2
1 and

is optimal (Cox and Hinkley, 1974; Wu, 2003).6

The ME test is a by-product of a more general non-parametric
approach to density estimation. It can indeed be shown that, when
the whole distribution is of interest, the method can be used for
fitting the best approximating density, with the optimal k found
by the llr test (Bee, 2013). Referring the interested reader to Wu
(2003) for details, themain advantages of the technique are that (i)
it delivers the best (according to the ME criterion) approximating
density, and allows one to assess whether it belongs to certain
parametric families; (ii) if the true distribution is a Pareto one,
it provides an estimate of the shape parameter; (iii) it does not
consider a single alternative model, so pitfalls such as the one
discussed for the UMPU test in Section 3 below are avoided.

5 The two most common cases are T (x) = x and T (x) = log(x), corresponding
respectively to arithmetic and logarithmic moments.
6 The routines for implementing the UMPU and ME tests are available at

https://sites.google.com/site/sschiavo7788/home/software.
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