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h i g h l i g h t s

• Poisson and conditional logit regressions are polar location choice models.
• A dissimilarity parameter λ covers the continuum between these models.
• The dissimilarity parameter is not identified in Schmidheiny and Brülhart (2011).
• We show that a choice consistent normalisation identifies λ.
• With panel data, a Poisson regression approach facilitates the estimation of λ.

a r t i c l e i n f o

Article history:
Received 24 January 2013
Received in revised form
5 April 2013
Accepted 8 April 2013
Available online 6 May 2013

JEL classification:
C2

Keywords:
Conditional logit model
Nested logit model
Poisson regression

a b s t r a c t

When estimating location choices, Poisson regressions and conditional logit models yield identical coeffi-
cient estimates (Guimarães et al., 2003). These econometric models involve polar assumptions as regards
the similarity of the different locations. Schmidheiny and Brülhart (2011) reconcile these polar cases by
introducing a fixed outside option transforming the conditional logit into a nested logit framework. This
gives rise to a dissimilarity parameter (λ ∈ [0; 1]) equalling 1 in Poisson regressions (with completely
dissimilar locations) and 0 in conditional logit models (with completely similar locations). The dissimi-
larity parameter is not identified in Schmidheiny and Brülhart (2011). We show that a choice consistent
normalisation identifies λ and that, with panel data, its estimation is facilitated by adopting a Poisson
regression approach.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

This paper extends recent firm location choice models of
Schmidheiny and Brülhart (2011) – henceforth SB – to identify a
dissimilarity parameter (λ) between alternative locations by using
panel Poisson regressions.

Let the firms undertaking a location choice be indexed with
i = 1, . . . ,N . Source countries are indexed with s = 1, . . . , S. The
choice set includes host locations indexed with h = 1, . . . ,H . A
location choice denoted by li,sh reveals that a host hwith the profit
opportunity E[Πi,sh] outperforms the other locations h′ that could
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have been chosen instead, that is

li,sh =


1 E[Πi,sh] > E[Πi,sh′ ] ∀ h ≠ h′

0 otherwise. (1)

A conditional logit model employs (1) as the dependent variable.
Thereby, choice-specific variables xsh (reported in logarithms)
linearly affect profit expectations E[Πi,sh] via

E[Πi,sh] = δs + x′

shβ + ϵi,sh, (2)

where δs absorbs source-specific factors. Furthermore, β are co-
efficients to be estimated. The stochastic component ϵi,sh follows a
Gumbel distributionwith location and scale parameter normalised
to, respectively, 0 and 1. The probability that a firm of s chooses h
equals

Psh =
exp


x′

shβ


S
s=1

H
h=1

exp

x′

shβ
 =

E[ncl
sh]

E[N]
. (3)
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The log-likelihood function equals

ln Lcl(β) =

S
s=1

H
h=1

nsh ln(Psh)

=

S
s=1


H

h=1

nshx′

shβ −

H
h=1


nsh ln

H
h=1

exp

x′

shβ


(4)

and permits us to estimate β . Guimarães et al. (2003) show that
a count regression onto nsh (the number of location choices) pro-
vides an alternative to estimate β . To see this, multiply (3) with the
denominator, which yields the (panel) Poisson regression

E[npc
sh ] = exp


δs + x′

shβ


= αsE[npc
sh ], (5)

where αs = ln(δs) and E[npc
sh ] = exp(x′

shβ). Assuming thatnpc
sh is

Poisson distributed with the conditional mean function exp(δs +

x′

shβ) of (5) yields a log-likelihood contribution of s given by

ln Lpcs (αs, β) = −αs

H
h=1

exp(x′

shβ)

+ lnαs

H
h=1

nsh +

H
h=1

nshx′

shβ −

H
h=1

ln nsh! (6)

Equating the first derivative with respect to αs with 0, and solving
for αs yields the maximum likelihood estimator of

αs =

H
h=1

nsh

H
h=1

exp

x′

shβ
 =

ns

E[ns]
. (7)

Hence, αs absorbs the discrepancy between the observed num-
ber of location choices ns and the number E[ns] expected from a
Poisson distribution. Thereby, 0 < αs < 1 implies that the ob-
served number of location choices is ‘‘underreported’’. Substituting
(7) into (6) and summing over S yields the log-likelihood function
of the fixed effects Poisson regression

ln Lpc(β) =

S
s=1


H

h=1

nshx′

shβ −

H
h=1


nsh ln

H
h=1

exp

x′

shβ


+ constant, (8)

which looks like a multinomial logit model (Hausman et al.,
1984, p. 919).1 Specifically, since (8) differs from (4) only by a con-
stant, the corresponding estimates for β are identical!

SB observe that the elasticity of the Poisson regression, given by

η
pc
k =

∂E[npc
sh ]

∂xsh,k

xsh,k
E[npc

sh ]
= βk, (9)

differs from the conditional logit model, given by

ηcl
sh,k =

∂E[ncl
sh]

∂xsh,k

xsh,k
E[nsh]

= (1 − Psh)βk, (10)

whereby βk denotes the coefficient pertaining to xsh,k. This reflects
that Poisson regressions deem the locations to be completely
dissimilar. Hence, a change of xsh,k affects the number of location
choices with h, but not with h′. SB refer to this as a ‘‘positive sum
world’’. Conversely, the conditional logit model is a ‘‘zero sum
world’’ where the locations represent completely similar options.

1 For a textbook discussion of the fixed effects Poisson regression, see Cameron
and Trivedi (1998, ch. 9.3).

Hence, when more firms choose h, this triggers an equivalent
reduction elsewhere.

SB show that the introduction of an outside option transforms
the conditional logit into a nested logit model covering the contin-
uum between the zero and positive sumworld. The outside option
h = 0 is independent of xsh. The corresponding profit equals

E[Πi,s0] = δs + ϵi,s0. (11)

Since the outside option contains only one alternative, this nested
logit model, depicted in Fig. 1, involves the partial degeneracy dis-
cussed in Hunt (2000). The probability Psh depends now on the
probability Pøs of not choosing the outside option and the (condi-
tional) probability Psh|ø to locate in h > 0, that is

Psh = Pøs · Psh|ø

=


S

s=1

H
h=1

exp

x′

shβςø
s

 λøs
ςøs


exp


δsς o

s

λos
+


S

s=1

H
h=1

exp

x′

shβςø
s

 λøs
ςøs

·
exp


x′

shβςø
s


S

s=1

H
h=1

exp

x′

shβςø
s

 (12)

=

exp

x′

shβςø
s

 
S

s=1

H
h=1

exp

x′

shβςø
s


λøs
ςøs

−1



exp


δsς o

s

λos
+


S

s=1

H
h=1

exp

x′

shβςø
s

 λøs
ςøs

. (13)

The inclusive value parameter (λø
s /ς

ø
s ) ∈ [0, 1] measures the dis-

similarity between the locations h > 0. Specifically,

(λø
s /ς

ø
s ) =


1 − ρø

s (14)

where ρø
s ∈ [0, 1] is the correlation between the stochastic profit

components ϵi,sh|ø of investing in different locations. Consider the
outside option o offering only the basic ‘‘choice’’ of h = 0. Hunt
(2000) observes that the distinction between unconditional and
conditional probabilities is here obsolete, as Ps0|o = 1 and Ps0 =

Pos × Ps0|o. The probability of choosing h = 0 equals

Pos = Ps0 = (1 − Pøs)

=
exp


δsς

o
s

λos


exp


δsς o

s

λos
+


S

s=1

H
h=1

exp

x′

shβςø
s

 λøs
ςøs

. (15)

The coefficients β can be estimated by maximum likelihood from
(13) and (15). However, empirically, only the correlation ρø

s , but
not the scale parameters λø

s and ςø
s , can be estimated from the data

(Hunt, 2000). This over-identification problem necessitates some
normalisation. SB (p. 217) set ςø

s = 1, ς o
s = 1, and λo

s = 1 where-
fore (13) and (15) become

Psh =

exp

x′

shβ
 

S
s=1

H
h=1

exp

x′

shβ
(λøs −1)

exp (δs) +


S

s=1

H
h=1

exp

x′

shβ
λøs

=
exp(x′

shβ)(E[Nø
])(λ

ø
s −1)

exp(δs) + (E[Nø])λ
ø
s

(16)
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