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Fold recognition is a challenging field strongly associated with protein function determination, which
is crucial for biologists and the pharmaceutical industry. Hidden Markov models (HMMs) have been
widely used for this purpose. In this paper we demonstrate how the fold recognition performance of a
recently introduced HMM with a reduced state-space topology can be improved. Our method employs an
efficient architecture and a low complexity training algorithm based on likelihood maximization. The fold
recognition performance of the model is further improved in two steps. In the first step we use a smaller
model architecture based on the {E,H,L} alphabet instead of the DSSP secondary structure alphabet. In the
second step secondary structure information (predicted or true) is additionally used in scoring the test set
sequences. The Protein Data Bank and the annotation of the SCOP database are used for the training and
evaluation of the proposed methodology. The results show that the fold recognition accuracy is substan-
tially improved in both steps. Specifically, it is increased by 2.9% in the first step to 22%. In the second step
it further increases and reaches up to 30% when predicted secondary structure information is additionally
used and it increases even more and reaches up to 34.7% when we use the true secondary structure. The
major advantage of the proposed improvements is that the fold recognition performance is substantially
increased while the size of the model and the computational complexity of scoring are decreased.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years there has been a vast increase in the number of
proteins whose primary sequences have been identified. For most
of these proteins, structure and function remains to be defined.
The proteins with similar structure usually have similar function,
so finding the structure can lead to the determination of function.
Therefore, managing to relate amino acid sequences of unknown
structure, with those of proteins with known structure, provides an
indirect way to make predictions for both their structural and func-
tional attributes [1]. Proteins which have major structural similar-
ities are considered to share the same fold category. Finding the
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fold category of a protein with unknown structure is very important,
as it reveals its three-dimensional structure. Different proteins can
be found in the same fold category even when there is a very low
sequence similarity among them [2,3]. So, as the fold of a protein
is more evolutionarily conserved than its amino acid sequence, a
target sequence can be modelled with reasonable accuracy on a very
distantly related template, provided that the relationship between
target and template can be discerned through sequence alignment
[4]. The task of identifying the fold category to which a protein of
unknown structure belongs is called fold recognition.

A variety of methods have been proposed in the literature to
address the problem of fold recognition. There are two main cat-
egories, the informatics-based methods and the biophysics-based
methods. The informatics-based methods are divided into two
subcategories, the sequence-based methods and the structure-
based methods. The sequence-based methods use the primary
sequence and/or the predicted secondary sequence information of
the protein with unknown structure to perform sequence com-
parison with proteins of known structure [5–16]. Various machine
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learning methods have been used for that comparison, such as hid-
den Markov models (HMMs) [5–11], genetic algorithms (GAs) [12],
support vector machines (SVMs) [13–15], artificial neural networks
(ANNs) [14] and segmentation conditional random fields (SCRFs)
[16]. The structure-based or threading methods scan the amino acid
sequence of an unknown structure against a database of known
structures. In each case, a scoring function is used to assess the
compatibility of the sequence to the structure, thus yielding possi-
ble three-dimensional models [17–20]. This type of method is also
known as three-dimensional–one-dimensional fold recognition due
to its compatibility analysis between three-dimensional structures
and linear protein sequences. Unlike the informatics-based methods,
the biophysics-based methods perform ab initio structure prediction.
More specifically, they do not perform any comparison of the pri-
mary sequence of the query protein with known folds. Instead they
try to find or approach the specific three-dimensional structure of
the protein which minimizes its energy [21–23].

Among the sequence-based methods, HMMs are commonly used
for fold recognition and have proved to be very effective [5–11].
The main drawback of HMMs is the employment of large model
architectures which require large datasets and high computational
effort for training. Recently, we introduced a reduced state-space
HMM with a much smaller architecture which also adopts a low
complexity training algorithm for training, that proved to be equally
effective in fold recognition [11]. In the current work we introduce
certain improvements to that model that further improve its fold
recognition performance without increasing its complexity. These
improvements take place in two steps.

More specifically, in the first step we decrease the number of
states by adopting the simple DSSP-EHL alphabet for the secondary
structure. This reduction leads to an even smaller number of param-
eters that needs to be calculated in the training phase and simul-
taneously to better results. In the second step, we additionally use
the predicted or the true secondary structure sequences in scoring
the test set sequences. Thus, we avoid the use of the complex for-
ward algorithm [11] for scoring and also we exploit the secondary
structure information of the test set proteins.

In the following, the initial model is briefly described followed
by the proposed improvements, and the training and the scoring
procedures are also explained. The employed dataset is described
next, as well as the experiments that we performed in order to
evaluate the proposed methodology. Finally, the advantages and the
disadvantages of the proposed approach are discussed.

2. Methods

HMMs are widely used in modelling families of biological se-
quences. A HMM is trained using a set of sequences called a train-
ing set and then it can be used for discrimination. The aim of the
learning procedure is to maximize the likelihood of the model given
the training data. The observer does not know which state produced
each specific signal, because that state is hidden from him. This is
the first main characteristic of a HMM, which differentiates it from
other stochastic models. The second is the Markov property, which
means that given the value of the previous state St−1 the current
state St and all future states are independent of all the states prior
to St−1 [25].

The reduced state-space HMM [11], which was recently intro-
duced, uses the mathematical framework of a typical HMM though
it adopts a much smaller architecture containing a limited number
of states. It consists of a set of states S and a set of possible transi-
tions T among them. Each state stochastically emits a signal and then
the procedure is moved forward to another state with a probabil-
ity depending on the previous state. The procedure continues until
the total of each sequence is emitted. There is also a beginning state

Table 1
Correspondence between letters of the DSSP alphabet and the letters of the DSSP-
EHL alphabet.

DSSP Type Corresponding letter of the
DSSP-EHL alphabet

H Alpha-helix H
G 310-helix H
I �-helix H
E Extended (�-strand) E
B Residue in isolated �-bridge E
T Turn L
S Bend L

where the process starts and a set of transition probabilities from
the beginning of each possible state. That set of probabilities sums
to unity and so does the set of emissions of possible signals in each
state and the set of transitions from each state.

The reduced state-space topology that was used in our recent
model addressed the main disadvantage of the previous HMMs,
which is the employment of large model architectures which de-
manded large datasets and consequently high computational effort
for training. The reduced HMM could be trained and then used for
classification of proteins into fold categories. It contains a small num-
ber of states, because it incorporates the secondary structure in such
a way that each state of the model corresponds to every possible
different secondary structure state. This fact enables us not only to
use the secondary structure information to train the model, which is
necessary for more accurate classification of proteins into fold cate-
gories, but also to drastically reduce the number of states employed
in the model and, thus, the number of parameters which must be
estimated. Moreover, the model is trained with the use of a low com-
plexity algorithm based on likelihood maximization, because the se-
quence of states during the training phase is known, so we can avoid
complicated iterative procedures.

In the current work we introduce specific improvements in the
reduced state-space model which lead to a substantial increase in
its ability to classify proteins in the correct fold category. These im-
provements are presented in two steps. In the first step we change
the topology of the model while in the second step we change the
way that the test proteins are scored against the improved model.

More specifically, in the first step we use a different alphabet in
order to encode the secondary structure of the proteins. The differ-
ent possible secondary structure formations of each amino acid are
represented by the 3-letter alphabet DSSP-EHL instead of the 7-letter
DSSP alphabet. As it is shown in [10], the DSSP-EHL alphabet is a
reduced representation of the DSSP alphabet. Specifically, H, G and
I correspond to H, E and B–E, while T and S–L. Those amino acids
which were considered of unknown structure in the DSSP represen-
tation are considered as loop (L) in the DSSP-EHL representation. The
correspondence of letters between the two alphabets is presented in
Table 1. So, now we employ three states in the model, corresponding
to the three different possible formations of underlying secondary
structure that each amino acid may have according to the DSSP-EHL
alphabet, as it is shown in Fig. 1.

There is one to one correspondence between the amino acid
residues and the secondary structure residues in the training set.
The states of the model are fully connected, which means that ev-
ery possible transition between them is allowed. In each state there
is a distribution over all possible amino acids. There are 21 possible
residues in each distribution. Twenty of them correspond to the 20
different amino acids and there is also one residue which represents
amino acids of unknown origin (due to experimental limitations).
More specifically, in the model there are 3×21 emission parameters,
3×3 transition parameters between the states and three parame-
ters for the transitions from the starting state. Therefore, the total



Download English Version:

https://daneshyari.com/en/article/505989

Download Persian Version:

https://daneshyari.com/article/505989

Daneshyari.com

https://daneshyari.com/en/article/505989
https://daneshyari.com/article/505989
https://daneshyari.com

