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a b s t r a c t

In numerically implementing the optimization of an expected value in many economic models, it is
often necessary to approximate a given continuous probability distribution by a discrete distribution.
We propose an approximation method based on the principle of maximum entropy and minimum Kull-
back–Leibler information, which is computationally very simple. Our method is not intended to replace
existing methods but to complement them by ‘‘fine-tuning’’ probabilities so as to match prescribed (not
necessarily polynomial) moments exactly.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

How can we find a discrete distribution that approximates a
given distribution?

To motivate this question, consider the following problem.
There is an investor who lives for two periods with utility function

1
1 − γ


c1−γ

0 + βE[c1−γ

1 ]


, (1)

where β > 0 is the discount factor, γ > 0 is the relative risk aver-
sion coefficient, and c0, c1 are consumption for today and tomor-
row. The investor is endowed with initial wealth w > 0 today but
nothing tomorrow. After deciding how much to consume today,
he can invest his remaining wealth w − c0 in J assets indexed by
j = 1, . . . , J . Asset j has gross return Rj ≥ 0, which is a random
variable. Let θj be the fraction of the remaining wealth invested in
asset j,1 θ = (θ1, . . . , θJ) ∈ RJ


where


j θj = 1


be the portfo-

lio, and R(θ) =


j Rjθj be the return on portfolio θ . The budget
constraint is then
c1 = R(θ)(w − c0). (2)
The investor’s objective is tomaximize the expected utility (1) sub-
ject to the budget constraint (2).

∗ Corresponding author. Tel.: +1 203 432 3576.
E-mail addresses: ketanaka@fun.ac.jp (K. Tanaka), alexisakira.toda@yale.edu

(A.A. Toda).
1 Of course, the investor is long in asset j if θj > 0 and short if θj < 0.

Characterizing the solution to this problem is not difficult.
Substituting (2) into (1), it suffices to solve

max
c,θ

1
1 − γ


c1−γ

+ βE[R(θ)1−γ
](w − c)1−γ


,

which can be broken into

k
1 − γ

:= max
θ

1
1 − γ

E[R(θ)1−γ
], (3a)

U := max
c

1
1 − γ

(c1−γ
+ βk(w − c)1−γ ). (3b)

Since the optimal consumption/saving problem (3b) can be solved
by calculus, the original problem reduces to solving the optimal
portfolio problem (3a).

Solving this problem numerically is not trivial, however, since
for most probability distributions the expectation E[R(θ)1−γ

] ad-
mits no closed-form expression. However, if the distribution of as-
set returnsR = (R1, . . . , RJ) is discrete, then E[R(θ)1−γ

] is simply a
sumandwe can apply any optimization routine. Therefore, in prac-
tice it is important to approximate a given probability distribution
by a discrete distribution.

A typical procedure for approximating a probability distribution
by a discrete distribution is to partition the range of possible values
(Tauchen, 1986) or the range of cumulative probabilities (Adda and
Cooper, 2003) into intervals, and then assign the true probability
to a representative point (usually the mid-point or the median) of
each interval. The advantage of these methods is their simplicity
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and that they work in any dimension. As shown by Miller and Rice
(1983), however, this method underestimates the moments of the
true distribution. Although the approximated moments approach
the true moments as the number of points increases, we cannot
always use a large number of points due to the computational
cost with the problem we want to solve by discretization (in our
case, (3a)). With a small number of points the discrepancy in
moments can be substantial. As a remedy, Miller and Rice (1983)
propose an approximation method based on Gaussian quadrature
that match prescribed moments exactly, but their method works
only in one dimension and with polynomial moments. DeVuyst
and Preckel (2007) generalize the Gaussian quadrature method
(which they call Gaussian cubature) to themulti-dimensional case,
which reduces to solving a linear programming problem. However,
their method is computationally intensive because the number of
unknown variables is equal to that of points, which is typically
large, and they do not prove that a solution exists.

In this paper we propose an approximation method based
on Jaynes (1957)’s maximum entropy principle (MaxEnt) that
matches prescribed moments exactly. Starting from any integra-
tion (quadrature) formula, we ‘‘fine-tune’’ the prior probabilities
byminimizing the Kullback–Leibler information between the prior
and posterior probabilities subject to the prescribed moment con-
straints. Since the dual problem of finding the probabilities is an
unconstrained convex optimization problem with the number of
unknown variables equal to the number of moments prescribed,
it is computationally very simple. Furthermore, our method works
on any discrete set (not necessarily a lattice) of any dimensionwith
any prescribed moments (not necessarily polynomials).

2. Main results

2.1. Formulation of the problem

A researcher wants to approximate a probability density func-
tion f on RK by probabilities {p(x)|x ∈ D} on a finite discrete set
D ⊂ RK . The density f may be known or unknown. For instance, f
may represent a parametric distribution exogenously specified in
the economic model, a nonparametric distribution estimated from
data, or a prior distribution in the researcher’s mind. In either case,
we assume that somemoments T̄ =


T (x)f (x)dx are given, where

T : RK
→ RL is a measurable function. For instance, if the first and

second moments are given,

T (x) = (x1, . . . , xK , x21 . . . , xkxl, . . . , x2K ).

Since we are prescribed K expectations, K variances, and K(K−1)
2

covariances, in this case we have

L = K + K +
K(K − 1)

2
=

K(K + 3)
2

.

To match these moments with a discrete distribution, it suffices to
assign probabilities {p(x)|x ∈ D} such that
x∈D

T (x)p(x) = T̄ .

This problem is ill-posed, for in general the number of unknowns
(p(x)’s), namely #D, is much larger than the number of equations
(moments), L + 1.2

To circumvent this difficulty, we apply Jaynes (1957)’s max-
imum entropy principle (MaxEnt). Jaynes proposed that when
we want to assign probabilities p = (p1, . . . , pN), given some
‘background information’ (such asmoment constraints), we should

2 The ‘‘+1’’ comes from accounting the probabilities


x∈D p(x) = 1.

choose the least informative distribution by maximizing the Shan-
non (1948) entropy

H(p) = −

N
n=1

pn log pn. (4)

MaxEnt has been subsequently generalized and axiomatized in
such a way to minimize the Kullback–Leibler information of p =

(p1, . . . , pN) given the prior distribution3 q = (q1, . . . , qN),

H(p|q) =

N
n=1

pn log
pn
qn

, (5)

subject to the constraints specified in the underlying problem
(Caticha and Giffin, 2006). The Shannon entropy (4) can be inter-
preted as the (negative of) Kullback–Leibler information (5) cor-
responding to the uniform prior q = (1/N, . . . , 1/N) modulo an
additive constant. MaxEnt methods can be justified in a number of
ways4 and has been successfully applied in many fields including
economics and finance.5

The problem can now be formalized as follows. The researcher
is given a discrete set D ⊂ RK , a prior distribution {q(x)|x ∈ D}, a
function determining the moments T : RK

→ RL, and moments
T̄ ∈ RL. The objective is to obtain the least informative posterior
(in the sense of the Kullback–Leibler information) {p(x)|x ∈ D} that
matches the prescribed moments, that is,

min
{p(x)}


x∈D

p(x) log
p(x)
q(x)

subject to

x∈D

T (x)p(x) = T̄ ,

x∈D

p(x) = 1, p(x) ≥ 0. (P)

Returning to the original problem of approximating a density
f , if the true density is totally unknown, there is no reason to
discriminate one point x ∈ D over another, so it is natural to choose
the uniform prior q(x) = 1/N . If the true density f is known (either
exogenously given in the model or nonparametrically estimated
from data), we can take D to be a lattice on RK and take the prior
q(x) = f (x)/


x∈D f (x), proportional to the given density. If the

researcher already has an integration (quadrature) formula
g(x)f (x)dx ≈


x∈D

w(x)g(x)f (x), (6)

where {w(x)}x∈D areweights and g is the integrand (herewe regard
g as a function whose expectation with respect to the density f we
want to compute), then one can use q(x) = w(x)f (x). Note that
the ‘‘proportional’’ case is a special case by letting the weighting
function w(x) be the constant 1/


x∈D f (x).

As is common in maximum entropy and Bayesian inference,
we do not address how to choose the prior q(x) but take the
prior q(x) as given. Instead we fine-tune the probabilities q(x) and
obtain the optimal (least informative) posterior p(x) by solving the
problem (P).

2.2. Solution

The following theorem shows how to solve problem (P).

3 The maximum entropy literature typically refers to the starting distribution q
as ‘‘prior’’. This usage (although it may appear unfamiliar) does not contradict with
that of Bayesian inference, for Caticha and Giffin (2006) proved that Bayes’s rule is
implied by minimizing the K–L information.
4 In this paper we use MaxEnt merely as a tool. Interested readers can refer

to Jaynes (2003) for interpretations, Van Campenhout and Cover (1981) for the
relation to Bayesian inference, and Shore and Johnson (1980), Caticha and Giffin
(2006), and Knuth and Skilling (2010) for axiomatic approaches.
5 See Shore and Johnson (1980) for a short review of applications and Buchen

and Kelly (1996), Wu (2003), Veldkamp (2011), and Cabrales et al. (forthcoming)
for applications in economics.
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