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a b s t r a c t

I propose a general, simple approach to recovering an unconditional heterogeneity distribution when a
conditional distribution has been estimated. The approach can be applied to cross section models and
panel data models – both static and dynamic – with unobserved heterogeneity.
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1. Introduction

The correlated random effects (CRE) approach to panel data
models dates back to Mundlak (1978) in the linear case and
Chamberlain (1980) in the nonlinear case. Wooldridge (2010)
illustrates how several popular models – including linear models,
binary response models, ordered response models, models for
corner solution responses, and count data models – can be
specified and estimated using a CRE approach.

The CRE approach has several benefits, including that it is
usually straightforward to implement and that quantities of
interest, such as average partial (or marginal) effects, are easy to
recover. The starting point for a CRE approach is typically the same
as the so-called ‘‘fixed effects’’ approaches. Namely, one specifies
a marginal or joint distribution for a response or a set of responses
conditional on observed covariates and unobserved heterogeneity.
The second step, unique to the CRE approach, is to model the
conditional distribution of heterogeneity given a set of observable
covariates.

As shown by Altonji and Matzkin (2005) and Wooldridge
(2005a), one need not be able to fully identify the conditional
or unconditional heterogeneity distributions in order to estimate
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average partial effects (APEs). Wooldridge (2010) covers several
common parametric examples – including linear, probit, and Tobit
CRE models – that demonstrate how the APEs are identified
even when the distribution of heterogeneity is not. ((Chamberlain,
1984), first demonstrated identification of APEs for the CRE probit
model in the presence of serial correlation of unknown form.)
Thus, in many applications one can estimate quantities of interest
without making extra assumptions needed to characterize the
heterogeneity distribution.

Nevertheless, one is sometimes interested in estimating the
unconditional distribution of heterogeneity in the population —
even if it means imposing extra assumptions. In this paper, I use a
simple result from probability theory that relates an unconditional
density to the expected value of a conditional density. This result
allows one to identify and consistently estimate an unconditional
heterogeneity distribution when a distribution of heterogeneity
conditional on observed variables is identified. Inference for the
unconditional density is relatively straightforward.

Before continuing, I should emphasize that, when applied to
panel datamodels, I am thinking of caseswhere there are relatively
few time periods for each cross section unit. With many time
periods per unit, a ‘‘fixed effects’’ approach – where unobserved
heterogeneity is estimated along with the population parameters
– is common, inwhich case those estimates can be used to estimate
the distribution of heterogeneity. For a recent example, see Jones
and Schurer (2011).
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2. A simple relationship between marginal and conditional
densities

Let (U,W) be a random vectorwithmarginal densities fU(·) and
fW(·). Technically, these are with respect to σ -finite measures, say
ηU and ηW. Let fU|W(·|·) be the conditional density with respect
to the measure ηU. For each w ∈ W (the support of W), fU|W(·|w)
can be discrete, continuous, or have both features. We assume that
fU|W(·|w) is a densitywith respect to themeasure ηU, which simply
means that the nature of U – for example, whether it is discrete or
continuous – does not change with the conditioning valuesw.

It is well known (for example Billingsley, 1995) that we can
obtain fU(u) for all u ∈ U by integrating (in the measure-theoretic
sense) the conditional density against fW(w):

fU(u) =

∫
W

fU|W(u|w)fW(w)ηW(dw). (2.1)

For the purposes of this paper, the key result is expressing (2.1)
as an expected value with respect to the distribution of W. In
particular, for any given u ∈ U (the support of U), (2.1) can be
written as
fU(u) = EW[fU|W(u|W)], (2.2)
where the notation EW[·] is used to emphasize that the expectation
is with respect to the distribution of W. The expression in (2.2) is
useful for estimating fU(u) quite generally when we replace EW[·]

with its sample analog.

3. A general estimation strategy

Now let fU|W(u|w; γ) be a parametric model for the conditional
density, and assume that it is correctly specified: for some γo ∈

Γ , fU|W(u|w; γo) is the true conditional density. Let γ̂ be a
√
N-

consistent, asymptotically normal estimator of γo based on a ran-
dom sample {(Xi, Yi,Wi) : i = 1, . . . ,N}. Typically, γ̂ is obtained
alongwith an estimator θ̂ that indexes some feature ofD(Yi|Xi,Wi,
Ui) – sometimes a complete density and other times a conditional
expectation.

Under weak regularity conditions, a
√
N-consistent, asymptot-

ically normal estimator of fU(u) is obtained as

f̂U(u) = N−1
N−
i=1

f̂U|W(u|Wi) ≡ N−1
N−
i=1

fU|W(u|Wi; γ̂). (3.1)

Underlying consistency is the weak law of large numbers because

N−1
N−
i=1

fU|W(u|Wi; γo)
p

→ EW[fU|W(u|W;γo)] = fU(u), (3.2)

where the equality follows from Eq. (2.2). Replacing γo with γ̂ gen-
erally preserves consistency. Continuity of fU|W(u|w; γ) in γ and
a boundedness condition on the moments E(U,W)[fU|W(U|W;γ)],
across all possible values of γ , suffice. See, for example,Wooldridge
(2010, Lemma 12.1). Asymptotic normality can be obtained from
Wooldridge (2010, Problem 12.17); in particular, the delta method
can be used to obtain a valid asymptotic standard error for any u.
Bootstrapping can be used, although it could be computationally
intensive to obtain a standard error for numerous values of u.

When Wi is a discrete random vector taking on G values, say
{w1,w2, . . . ,wG}, the estimator in (3.1) is simple to characterize:

f̂U(u) = N−1
N−

Wi=w1

fU|W(u|w1; γ̂)+ · · ·

+N−1
N−

Wi=wG

fU|W(u|wG; γ̂)

= ρ̂1fU|W(u|w1; γ̂)+ · · · + ρ̂GfU|W(u|wG; γ̂), (3.3)

where ρ̂g = Ng/N is the fraction of the sample with Wi = wg .
The expression in (3.3) shows that f̂U(u) is a finite mixture of the
estimated conditional densities, with mixing probabilities equal
to the sample proportions. Note that this has nothing to do with
the nature of the distribution of U; fU|W(u|w; γ) can be discrete,
continuous, or have both features.

By construction, the moments of the estimated distribution can
be obtained by a sample version of the law of iterated expectations.
For a function q(Ui), suppose E[q(Ui)|Wi] = m(Wi; γ). Then the
estimator of µq ≡ E[q(Ui)] obtained from integrating (3.1) is
simply

µ̂q = N−1
N−
i=1

∫
U

q(u)fU|W(u|Wi; γ̂)ηU(du)

= N−1
N−
i=1

m(Wi; γ̂), (3.4)

where m(w; γ̂) is the conditional mean function obtained from
fU|W(·|w; γ̂).

4. Application to cross section models

As one application of the estimator on Section 3, consider a
standard heteroskedastic probit model, written as

yi = 1[αo + xiβo + ui > 0]
D(ui|xi) = Normal[0, exp(xiγo)],

where yi is the binary response. The parameters (αo,βo, γo)
are easily estimated via maximum likelihood using the response
probabilities

P(yi = 1|xi) = Φ[exp(−xiγo/2)(αo + xiβo)]. (4.1)

The MLE is programmed into popular software packages.
As shown by Wooldridge (2005b), consistent estimation of the

average partial effects (APEs) is possible without estimating the
unconditional heterogeneity distribution. To this end, the average
structural function [Blundell and Powell (2004)] is defined by

ASF(x) = Eui{1[αo + xβo + ui > 0]}.

For any fixed vector x, a consistent estimator of ASF(x) is

ASF(x) = N−1
N−
i=1

Φ[exp(−xiγ̂/2)(α̂ + xβ̂)]. (4.2)

Average partial effects are estimated by computing derivatives and
changes ofASF(x). Thus, for the purposes of estimating directions
and magnitudes of the effects, the unconditional distribution of ui
is not needed.

We may be curious, though, to have some sense of the shape
of the density of ui. We know that the conditional distribution,
D(ui|xi), has the familiar bell shape, centered at zero (because of
the intercept included in the model) but with variances generally
changing with xi. We can write the conditional density as

fui|xi(u|x) = exp(−xγo/2)φ[exp(−xγo/2)u] (4.3)

for any x and u, whereφ(·) is the standard normal density function.
Since we have consistent estimators of the unknown parameters
we can use Eq. (3.2) to estimate the unconditional density, fui(·), at
each point:

f̂ui(u) = N−1
N−
i=1

exp(−xiγ̂/2)φ[exp(−xiγ̂/2)u]

= N−1
N−
i=1

(2π)−1/2 exp(−xiγ̂/2)

× exp[− exp(−xiγ̂)u2/2]. (4.4)
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