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a b s t r a c t

This paper considers participation in deterministic contests for m ≥ 1 identical prizes, which employ an
auction-like rule to determine the winners. In most papers that investigate such models, participation by
precisely m + 1 players is associated with players having complete information about their opponents’
characteristics, and participation bymore thanm+1 players is associatedwith players having incomplete
information about their opponents’ characteristics. I show that incomplete information is in fact neither
sufficient nor necessary for participation by more thanm + 1 players.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Some real-world competitions induce active participation by
many competitors, whereas others lead to active participation by
only a few competitors, often only one more than the number
of prizes. What determines the number of active participants in
a competition for m ≥ 1 identical prizes? More than m + 1
competitors may participate if, given their investments, there is
exogenous uncertainty regarding the outcome. This is the case,
for example, in Tullock’s (1980) lottery model, in which each
player’s probability of winning is proportional to his share of
the aggregate investments. When the outcome given investments
is deterministic, as is the case in auction-like contest models,
participation by more than m + 1 competitors occurs when
competitors have private information about their valuations. This
is the case, for example, in the classic symmetric independent
private value all-pay auction (Krishna, 2002). In contrast, precisely
them+1 competitorswith the highest valuations participate in the
complete-information all-pay auction when players’ valuations
differ (Clark and Riis, 1998).1 Participation by only the m +

1 strongest players is also a hallmark of complete-information
variants of the all-pay auction (examples include Che and Gale
(1998) and González-Díaz (forthcoming)). Thus, it is natural to
ask whether equilibrium participation by more than m + 1
competitors in deterministicmodels of competition occurs, at least

E-mail address: r-siegel@northwestern.edu.
1 Baye et al. (1996) showed that more than two competitors may participate

when certain players’ valuations are identical. This participation result is not robust
to slight changes in players’ valuations.

‘‘generically’’, if and only if competitors are uncertain about some
characteristics of their rivals.

This paper includes two results, Propositions 1 and 2, which
together show that the answer is ‘‘no’’. The first result shows that
for any number of players, prizes, and participants (larger than the
number of prizes), there exist complete-information, deterministic
contests with these number of players and prizes in which in any
equilibrium precisely the specified number of players participate.
This generalizes Siegel’s (2009) example in which three players
participate in a complete-information contest for one prize. The
result is robust in that it continues to hold when the contests
are perturbed slightly. The second result identifies a large class of
incomplete-information deterministic contests in which only the
strongest m + 1 players participate. This class includes multiprize
all-pay auctions in which players’ valuations are drawn from
disjoint intervals. Intuitively, these results show that participation
by many players does not stem from incomplete information per
se, but arises when different players are known to have sufficient
cost advantages in different regions of the competition.

2. Complete-information contests

In a contest, n players compete for m homogeneous prizes, 0 <
m < n. The set of players {1, . . . , n} is denoted by N . Every player
i chooses a score si from R+ = [0, ∞). Given s = (s1, . . . , sn),
where si is player i’s chosen score, player i’s payoff is

ui (s) = Pi (s) Vi − ci (si) ,

where Vi > 0 is player i’s valuation for a prize, ci:R+ → R is player
i’s continuous, strictly increasing cost function, with ci (0) = 0 and
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limsi→∞ ci (si) > Vi, and Pi:Rn
+

→ [0, 1] is player i’s probability of
winning, which satisfies

Pi (s) =


0 if sj > si form or more players j ≠ i,
1 if sj < si for n − m or more players j ≠ i,

and
n

j=1 Pj (s) = m. When all costs are linear, we have an all-
pay auction (Hillman and Samet, 1987; Hillman and Riley, 1989;
Clark and Riis, 1998).2 The primitives of the contest are commonly
known.

Definition 1. (i) Player i’s reach ri is the score whose cost equals
the player’s valuation for a prize. That is, ri = c−1

i (Vi). Re-
index players in (any) decreasing order of their reach, so that
r1 ≥ r2 ≥ · · · ≥ rn.

(ii) Playerm + 1 is themarginal player.
(iii) The threshold T of the contest is the reach of the marginal

player: T = rm+1.

A final requirement in the definition of a contest is that only
the marginal player’s reach equals the threshold. In an all-pay
auction, for example, a player’s reach is his valuation for a prize, the
marginal player is the player with the (m + 1)st highest valuation,
and themarginal player’s valuation is required to be different from
those of the other players. The model of contests described here is
a special case of Siegel’s (2009) all-pay contest model.

A player participates in an equilibrium of a contest if with
positive probability he chooses positive scores (whose cost is
positive).3

Proposition 1. For any n, m, and k such that n ≥ k > m > 0, there
exist contests with n players andm prizes such that in any equilibrium
precisely k players participate.

The proof of Proposition 1 is in the Appendix. Intuitively,
Proposition 1 stems from the fact that many players participate
when different players have local cost advantages in different
regions. To see why this happens, consider a player i whose cost
in a certain interval I of scores is much lower than those of the
other players. Lemma 1 in the Appendix shows that at least two
players choose scores in I . If player i does not participate, then his
payoff is 0. But because other players choose scores in I , by doing
so they have to win with a probability that is sufficiently high to
offset their costs. And because player i’s costs are much lower then
those of the other players, player i would obtain a positive payoff
by choosing these scores in I . Therefore, player i must participate.

Baye et al. (1996) showed that many players may participate
in certain complete-information, single-prize all-pay auctions in
which many players have the same valuation for the prize.4
Their finding differs from Proposition 1 in two ways. First, the
auction games of Baye et al. (1996) have many equilibria, and in
contrast to Proposition 1, the number of players that participate
differs across equilibria, and equals two in some equilibria. Second,
perturbing players’ valuations in an all-pay auction leads to a
unique equilibrium, inwhich only the two playerswith the highest
valuations participate. The contests constructed in the proof of
Proposition 1 are robust to such perturbations: small changes
in players’ cost functions or valuations do not change players’
participation.

2 In an all-pay auction, ci (si) = si and ties are resolved by randomizing uniformly.
3 A player wins a prize with positive probability if and only if he participates.

Indeed, because participation is costly and choosing 0 is not, a participating player
must win a prize with positive probability. In the other direction, the Tie Lemma in
Siegel (2009) and the fact that 0 is the lowest possible score imply that a player who
chooses 0 wins a prize with probability 0.
4 These all-pay auctions do not meet the definition of a contest because players

other than the marginal player have reaches that equal the threshold.

3. Incomplete-information contests

Take a contest (as defined in Section 2) in which Vi and ci are
commonly known for every player i. Players are indexed as in
Definition 1. Now, add incomplete-information in the following
way. Every player i’s valuation is Vi + εi, where εi is player
i’s private information and is drawn from [−δ, δ] for some
δ > 0 according to some distribution µi. Players’ cost functions
remain commonly known. Each player, after observing his private
information, chooses a score, and thewinners are determined as in
the complete-information case.

Proposition 2. If for some i > m + 1 we have

cm+1 (x)
Vm+1

<
ci (x)
Vi

for all x > 0, (1)

then for small δ > 0 player i does not participate in any equilibrium
of the incomplete-information contest described above. In particular,
if this condition holds for every player i = m + 2, . . . , n, then in any
equilibrium only players 1, . . . ,m + 1 may participate.

The proof of Proposition 2 is in the Appendix. The logic
underlying Proposition 2 is as follows. The marginal player can be
shown to have a payoff of 0 in any equilibrium when he has his
lowest possible valuation. Suppose that some player i > m+1 that
satisfies the conditions of Proposition 1 participates, and consider
a positive score chosen by player i in equilibrium. By choosing this
score when he has his highest possible valuation, player i obtains a
non-negative payoff, and therefore wins with a probability that is
sufficiently high to offset his costs. Because the marginal player’s
costs are strictly lower than those of player i, the marginal player
when he has his lowest possible type can obtain a positive payoff
by choosing a score slightly higher than the highest score chosen
by player i, a contradiction.

As an application of Proposition 2, take a complete-information
all-pay auction in which the marginal player’s valuation differs
from those of all other players, and add some incomplete
information as specified above. Proposition 2 shows that, for δ >
0 that is not too large, players m + 2, . . . , n do not participate
in any equilibrium of the incomplete-information contest. The
proof of Proposition 2 shows that this is true for any δ <

min


Vm−Vm+1
2 ,

Vm+1−Vm+2
2


.

Appendix. Proofs of Propositions 1 and 2

A.1. Notation and existing results

The following three results refer to complete-information
contests, and are immediate corollaries of results in Siegel (2009).5
I use these results in the proofs of Propositions 1 and 2 below. The
first result characterizes players’ equilibrium payoffs in terms of
their power, where player i’s power wi is his payoff if he chooses
the threshold and wins: wi = Vi − ci (T ).

Theorem 1. In any equilibrium of a contest, the expected payoff of
every player equals the maximum of his power and 0.

In addition to giving a closed-form formula for players’
equilibrium payoffs, Theorem 1 shows that players 1, . . . ,m have
positive expected payoffs, and playersm+1, . . . , n have expected
payoffs of 0.

5 The results follow, respectively, from Theorems 1 and 2, and Lemma 1 in Siegel
(2009).
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