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a b s t r a c t

We show that a non-Bayesian learning procedure leads to very permissive implementation results
concerning the efficient allocation of resources in a dynamic environment where impatient, privately
informed agents arrive over time, and where the designer gradually learns about the distribution of
agents’ values. This contrasts the rather restrictive results that have been obtained for Bayesian learning
in the same environment, and highlights the role of the learning procedure in dynamicmechanism design
problems.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

We analyze the implementation of the efficient dynamic policy
in a model where impatient, privately informed agents arrive over
time, and where the designer gradually learns about the distribu-
tion of agents’ values using a non-Bayesian updating procedure.

The complexities of Bayesian updating make Bayesian updat-
ing rules impossible to implement in practical applications: agents
often rely on simpler, non-Bayesian heuristics for updating their
beliefs. We show that a simple, non-Bayesian updating procedure
that was used in the classical search literature leads to very per-
missive implementation results, contrasting the rather restrictive
results that have been obtained for Bayesian learning in the same
mechanism design environment.

Our study highlights the role of learning in dynamic mecha-
nism design problems, and adds a new dimension that is mostly
lacking both in the classical (static) mechanism design theory, and
in the more recent literature on dynamic mechanism design. In
particular, we show that under-reaction to new information has
important consequences in frameworks where the information
is endogenously generated by strategic agents (see Epstein et al.
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(2008) for a study about the role of under-reaction in a dynamic
setting where new information is exogenously generated).

The present allocation model is based on a classical model due
toDerman et al. (1972) (DLR hereafter): a finite set of heterogenous
and commonly ranked objects is assigned to a set of agents who
arrive one at a time. After each arrival, the designer decides which
object (if any) to assign to the present agent. Both the attribute
of the present agent (that determines his value for the various
available objects) and the future distribution of attributes are
known to the designer in the DLR analysis.

Learning about future values in the complete-information
DLR model has been analyzed by Albright (1977). Gershkov and
Moldovanu (2009) added incomplete information to Albright’s
model, and derived an implicit condition ensuring that efficient
implementation is possible. Roughly speaking, implementation is
possible if the impact of currently revealed information on today’s
values is higher than the impact on option values. This insight re-
places in the dynamic framework with learning the single-crossing
idea appearing in the theory of static efficient implementation
with interdependent values.1 Gershkov and Moldovanu (2012) of-
fered conditions on the exogenous parameters of the model – the
prior beliefs about the agents’ values – that allow efficient imple-
mentation. Since these conditions are relatively restrictive, they

1 See for example Dasgupta andMaskin (2000) and Jehiel andMoldovanu (2001)
who analyzed static models with direct informational externalities.
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also characterized the incentive-efficient, second-best mechanism
based on Bayesian learning.

In the present paper we study an adaptive, non-Bayesian learn-
ing process that have been used in a search framework (see Roth-
schild, 1974) by Bickhchandani and Sharma (1996). This process
constructs a posterior that is a convex combination of a prior and
the empirical distribution, with more and more weight given to
the empirical distribution. The process is consistent in the sense
that it uniformly converges to the true distribution as the num-
ber of observations goes to infinity. This is a consequence of the
Glivenko–Cantelli Theorem.

We prove that, with this process, the efficient allocation is al-
ways implementable since new information is incorporated in op-
tion values at a slow rate, so that the impact of new information on
present values is always higher. We keep all other assumptions of
traditional dynamicmaximization. In particular, our designermax-
imizes expected utility given current beliefs and is aware of future
biases due to learning. Given Bayes’ Theorem, this means that dy-
namic inconsistencies may appear along the way—this is a com-
mon feature of models that relax some aspect of Bayesian learning
(see also Epstein et al., 2008).

Aword of caution is needed here: Our result does not imply that
the non-Bayesian procedure is ‘‘better’’ than Bayesian updating!
Since expectations depend on the learning process, a non-Bayesian
designer will generally prefer a different policy than a Bayesian
one. Thus, our result just says that the complete information
efficient allocation –whose calculation proceeds given an assumed
learning procedure – can always be implemented for the particular
adaptive process studied here. Examples will illustrate this issue.

The paper is organized as follows: In Section 2 we present the
dynamic allocation and learning model. In Section 3 we first recall
two results: 1. The characterization of the efficient allocation policy
under complete information due to Albright (1977); 2. An implicit
condition on the structure of the efficient policy ensuring that this
policy can be implemented also under incomplete information,
due to Gershkov and Moldovanu (2009). In Section 4 we focus on
the non-Bayesian learning model. Theorem 2 shows that, given
the learning model, the implicit condition is always satisfied,
and hence the corresponding efficient allocation policy is always
implementable. Section 5 concludes. The proof of the theorem is
relegated to an Appendix.

2. The model

There are m items and n agents. Each item i is characterized by
a ‘‘quality’’ qi, and each agent j is characterized by a ‘‘type’’ xj. If an
item with quality qi ≥ 0 is assigned to an agent with type xj and
this agent is asked to pay p, then this agent enjoys a utility given
by qixj − p. Getting no item generates a utility of zero. The goal is
to find an assignment that maximizes total welfare.

Agents arrive sequentially, one agent per period of time, and
each agent can transact (in both physical andmonetary terms) only
upon arrival.

Note that in a static problem, total welfare is maximized by as-
signing the item with the highest quality to the agent with the
highest type, the itemwith the second highest quality to the agent
with the second highest type, and so on (assortative matching).

Let period n denote the first period, period n − 1 denote the
second period, . . . , period 1 denote the last period. Ifm > nwe can
obviously discard the m − n worst items without welfare loss. If
m < n we can add ‘‘dummy’’ objects with qi = 0. Thus, we can
assume without loss of generality thatm = n.

While the items’ properties 0 ≤ q1 ≤ q2 · · · ≤ qm are assumed
to be known, the agents’ types are assumed to be independent
and identically distributed random variables Xi on [0, +∞) with
common cumulative distribution function F .

The function F is not known to the designer nor to the agents.
At the beginning of the allocation process the designer has a prior
Φn over possible distribution functions, and he updates his beliefs
after each additional observation. Denote by Φk (xn, . . . , xk+1) the
designer’s beliefs about the distribution function F after observing
types xn, . . . , xk+1. Given such beliefs, letFk(x|xn, . . . , xk+1) denote
the distribution of the next type xk, conditional on observing
xn, . . . , xk+1. Finally, we assume that each agent, upon arrival
observes the whole history of the previous play.

3. The dynamic efficient allocation

Albright (1977) derived the efficient dynamic policy under com-
plete information, i.e., when the agent’s type is revealed to the de-
signer upon the agent’s arrival. The efficient allocation maximizes,
at each decision period, the sum of the expected utilities of all
agents, given all the information available at that period. That is,
the designer solves the following recursivemaximization problem:
if at period k the set of objects still available for allocation isΠk, the
designer solves
max
qi∈Πk

[qi · xk + Vk−1(Πk \ {qi} | xn, . . . , xk)] (1)

whereVk−1(Πk\{qi} | xn, . . . , xk)denotes the expectedutility from
the optimal future allocation of the remaining inventory Πk \ {qi}
given that the designer has already observed types xn, . . . , xk.

It is important to note that, due to thepresence of learning about
the uncertain environment, the expectation Vk−1 is determined by
the prior beliefs, by the agents’ types observed so far, and by the be-
lief updating process. Thus, a non-Bayesian designer will generally
prefer a different policy than a Bayesian one.

Gershkov and Moldovanu (2009) displayed an implicit suffi-
cient condition on these cutoffs ensuring that the efficient alloca-
tion is implementable also under incomplete information. These
observations are gathered in the next theorem.

Let the history at period k, Hk, be the ordered set of all signals
reported by the agents that arrived at periods n, . . . , k + 1, and
of allocations to those agents. Let Hk be the set of all histories at
period k. Denote by χk the ordered set of signals reported by the
agents that arrived at periods n, . . . , k + 1.

Theorem 1. 1. Albright (1977) Assume that types xn, . . . , xk+1 have
been observed, and consider the arrival of an agent with type xk
in period k ≥ 1. There exist functions 0 = a0,k (χk, xk) ≤ a1,k
(χk, xk) ≤ a2,k(χk, xk) · · · ≤ ak,k(χk, xk) = ∞ such that the
efficient dynamic policy – which maximizes the expected value of
the total reward – assigns the item with the i-th smallest type if
xk ∈ (ai−1,k(χk, xk), ai,k(χk, xk)]. The functions ai,k(χk, xk) do not
depend on the q′s.

2. These functions are related to each other by the following recursive
formulae:

ai,k+1(χk+1, xk+1) =


Ai,k

xkdFk(xk|χk+1, xk+1)

+


Ai,k

ai−1,k(χk, xk)dFk(xk|χk+1, xk+1)

+


Ai,k

ai,k(χk, xk)dFk(xk|χk+1, xk+1) (2)

where2

Ai,k =

xk : xk ≤ ai−1,k(χk, xk)


Ai,k =


xk : ai−1,k(χk, xk) < xk ≤ ai,k(χk, xk)


Ai,k =


xk : xk > ai,k(χk, xk)


.

2 We set +∞ · 0 = −∞ · 0 = 0.
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