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a b s t r a c t

We make an extensive simulation analysis in order to investigate the consequences of ignoring the
potentially complex and data dependent effects of allocative inefficiency on the estimation of stochastic
frontier panel data models. Generally system estimators perform worse than single equation estimators.
This result holds even when we approximate the allocative inefficiency.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In the stochastic frontier framework, a cost–share system is
rarely estimated as the inefficiency term in the cost equation and
the deviations from the optimal shares from the observed shares
are complicated functions of allocative inefficiency. Kumbhakar
(1997) provides an exact solution but it is very difficult to estimate
this model. Hence, Kumbhakar and Tsionas (2005) and Brissimis
et al. (2009) provide first-order approximations to Kumbhakar’s
(1997) model. In the cross sectional data and single equation
framework, Kumbhakar and Wang (2006) show (by simulations)
that ignoring the allocative inefficiency can lead to non-negligible
biases in the parameter estimates. Hence, ignoring allocative
inefficiency can be problematic even for the single equation
models. In contrast to Kumbhakar and Wang (2006), who only
use a single equation maximum likelihood estimator, we use a
variety of estimators in our study. This enables us to compare the
performances of different estimators. One promising candidate for
this setting is Kumbhakar’s (1997) exact model. We make a Taylor
series approximation to Kumbhakar’s (1997) model.1 In addition
to this estimator we include two regression based (fixed effects
(FE) and Cornwell et al. (1990) within (CSSW)) and two maximum
likelihood based (single equation and system) estimators.

∗ Tel.: +1 404 894 4453; fax: +1 404 894 1890.
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1 We follow Kumbhakar and Tsionas (2005) and Brissimis et al. (2009).

In Section 2, we explain themodels thatwill be examined in our
simulations. Section 3 givesmore details about the simulations and
the results. Finally, in Section 4, we make our conclusions.

2. Models

We consider five differentmodels for our experiments. The first
and second models are FE and CSSW, respectively. Since these
estimators are well known, we omit the details. The third and
fourth models are single equation maximum likelihood estimator
(MLSE) and the system maximum likelihood estimator (MLSYS),
respectively. We assume that
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Sit = S̃it + eit , (2)
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where Cit is the total cost for firm i, Y k
it is the kth output for firm

i, Wm
it is the price index for the mth input for firm i, uit ≥ 0

is a random variable representing the total cost of inefficiency,
vit ∼ N(0, σ 2

v ) is the traditional error term, Sit is the vector of
observed input shares,2 S̃it is the optimal input share implied by
the Shephard’s lemma, and eit ∼ N(0, Σe) is the error term for
the share equations.3 We assume that uit , vit , and eit are mutually
independent. MLSE estimates Eq. (1) and MLSYS estimates the
system. For MLSE and MLSYS, we assume that uit = ui ∼

N+(0, σ 2
u ). MLSYS naively assumes that the error term for the share

equations is independent from the inefficiency term in the cost
equation. This assumption is inconsistent, because the error term
in the share equations cannot be independent from the cost of
allocative inefficiency.

The final estimator, MLKT, is a system estimator that approx-
imates Kumbhakar’s (1997) exact model.4 This is done by using
a first-order Taylor series approximation of the cost of allocative
inefficiency and the allocative inefficiency error term around zero
allocative inefficiency. Kumbhakar (1997) assumes a translog func-
tional form for the cost function as given in Eq. (1). Shephard’s
lemma implies the following input share equations:
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The observed input share equations are given by

Smit = S̃mit + ξm
it . (4)

Let uit = uT
it + uA
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is a function of time. Here, uT

it and uA
it represent the cost of technical

inefficiency and the cost of allocative inefficiency, respectively. The
cost of allocative inefficiency is modelled by utilizing the following
relationship:
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t is a function of time. In what follows, we set BT
t =

Bη
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Smit =
S̃m∗

it

Git exp(ηm)
+ ξm

it + emit = S̃mit + ξm
it + emit , (7)

where ξm
it =

S̃m∗
it

Git exp(ηmit )
−S̃mit represents deviations from the optimal

input shares due to input-specific allocative inefficiency and emit is
a term added to account for measurement errors. For the translog
cost function,

2 One of the input shares is omitted for obvious reasons.
3 The linear homogeneity restrictions for the input prices is imposed by

normalizing the cost and the prices by the price index for materials.
4 KT stands for Kumbhakar and Tsionas (2005) as it uses the approximation

proposed by them. Indeed, MLKT is a variation of the estimator proposed by
Brissimis et al. (2009).
5 See Kumbhakar (1997).

Table 1
Simulation results.

Base

PARAM FE CSSW MLSE MLSYS MLKT

β0 0.4852 0.4551 0.5206 0.5172 0.5173
βw 0.4996 0.4996 0.4997 0.4989 0.4989
βy 0.9003 0.9005 0.9002 0.9053 0.9051
βww −0.1018 −0.1017 −0.1016 −0.0918 −0.0923
βwy 0.1017 0.1018 0.1016 0.0920 0.0924
βyy 0.0982 0.0980 0.0983 0.0979 0.0979

SIZE FE CSSW MLSE MLSYS MLKT

β0 – – 0.2510 0.2530 0.2545
βw 0.0535 0.0640 0.0645 0.6670 0.6650
βy 0.0590 0.0730 0.0665 0.1010 0.1010
βww 0.0475 0.0540 0.0540 0.6495 0.6530
βwy 0.0580 0.0590 0.0675 0.6570 0.6635
βyy 0.0555 0.0635 0.0665 0.0695 0.0700

RMSE 0.1253 0.1339 0.1235 0.1483 0.1480
MAE 0.0850 0.0909 0.0838 0.1019 0.1018
RMSEeff 0.0392 0.0771 0.0373 0.0373 0.0488
MAEeff 0.0312 0.0593 0.0298 0.0297 0.0368
Mean u 0.2994 0.3294 0.2639 0.2650 0.2897

True u 0.2837 True Eff 0.7667
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As mentioned earlier, in the MLKT model we approximate
uA
it and ξit terms by a Taylor series expansion around ηit =

(η1
it , η

2
it , . . . , η

M−1
it )′ = 0 to get a closed form expression for the

log-likelihood function. Kumbhakar and Tsionas (2005) showed
thatuA

it ≃ 0 and ξm
it ≃


n H
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it ηn
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ifm = n andHmn
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n
it ifm ≠ n. The distributions for our

model are given by vit ∼ N(0, σ 2
v ), uT

it = uT
i ∼ N+(0, σ 2

u ), ηit =

ηi ∼ N(0, Ση), and eit ∼ N(0, Σe), where vit , uT
i , ηi, and eit are

mutually independent.

3. Simulations

We assume that Kumbhakar’s (1997) exact model is the true
model and that there are only two inputs. The distributions of
random variables are given by vit ∼ N(0, σ 2

v ), uT
it = uT

i ∼

N+(0, σ 2
u ), ηit = ηi ∼ N(0, σ 2

η ), and eit ∼ N(0, σ 2
e ), where

vit , uT
i , ηi, and eit are mutually independent. Moreover, uA

it and
ξm
it are generated according to Eqs. (8) and (9). The regressors,
Xit = [wityit ]′, are generated by a bivariate VAR model6:
Xit = RXi,t−1 + δit , where δit ∼ N(0, σ 2

δ I2) and Xi1 ∼

N(0, σ 2
δ (I2 − R2)−1).7 Wemake sure that the regularity conditions

hold: (1) monotonicity with respect to w and y, (2) concavity with
respect to w, (3) homogeneity of the degree 1 in w, (4) well-
defined input shares, and (5) uA

≥ 0. The values of yit and wit are
shifted by µyi and µwi , respectively. We used µyi ∼ N(µy, σ

2
µy

)

and µwi ∼ N(µw, σ 2
µw

). At each simulation, we drew a larger
number of firms thanN and discarded those firms that violated the

6 We followed Park et al. (2003, 2007) and Kutlu (2010).
7 In contrast to our simulations, Kumbhakar and Wang (2006) considers cross

sectional data.
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