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a b s t r a c t

A convenient and simple GMM procedure for estimating stochastic frontier models in the presence of
endogenous regressors is proposed. Monte Carlo simulations show that the proposed estimator works
very well in finite samples. We apply the proposed method to panel data of Norwegian dairy farms to
illustrate the usefulness of the proposed approach.
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1. Introduction

Recently, Kutlu (2010) proposed a modification of the Battese
and Coelli (1992) estimator to account for endogenous regressors
via one-step and two-stepML procedures. Themain advantage of a
two-step estimator is that it is easy to implement but the standard
errors of the estimated parameters are incorrect and inconsistent,
hence a bootstrap procedure is needed in order to obtain the
correct standard errors. In contrast, the one-step estimation is
more complicated to compute but it provides the correct standard
errors of the estimated parameters.

In this note we suggest a different one-stage estimation ap-
proach by looking at the first order conditions of the correct like-
lihood function, when endogeneity is taken into account, and
propose a simple GMM estimator that is consistent and asymptot-
ically efficient.

Section 2 gives the model specification and derivation of the
GMM estimator. Section 3 presents the results of Monte Carlo
experiments to examine the finite sample performance of the
GMMestimator. Section 4 applies the proposed estimator to a large
unbalanced panel data from Norwegian dairy farms. Concluding
remarks are given in Section 5.
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2. The model and GMM estimation procedure

Consider the following stochastic production frontier model
with endogenous regressors:

yit = z ′

1,itα + x′

itβ + vit − uit (1)

xit = z2,itγ + εit (2)
where ‘prime’ denotes transpose of a vector or a matrix, yit is a
scalar dependent variable, xit is a (1× p) vector of endogenous re-
gressors, z1,it is a (1×q1) vector of exogenous regressors, z2,it = Ip
⊗ z̃2,it , z̃2,it is of dimension q2 (q2 ≥ p), and z̃2,it is assumed to be
strictly exogenous in the sense that E(εit |z2,it) = 0 and E(ξit |zit , εit)
= E(ξit |εit) where ξit = vit − uit , and zit = (z1,it , z2,it). We assume
the error terms εit and vit satisfy the following:

ε̃it
vit


≡


Ω−1/2

ε εit
vit


∼ N


0
0


,


Ip ρσv

ρ ′σv σ 2
v


(3)

and Ω is a (p × p) variance–covariance matrix of εit and ρ is a
(p × 1) correlation vector between vit and εit . We assume that
uit ∼ i.i.d.

N(0, σ 2
u )
 and independent of xit , zit , vit and εit . Other

distributional assumptions of uit such as exponential, gamma or
truncated normal with exogenous variables dependent mean (e.g.,
Battese and Coelli, 1992, 1995) can be used without affecting the
proposed methodology given below.

By Cholesky decomposition of the variance–covariance matrix
of (ε̃it vit)

′, we can write (3) as:
ε̃it
vit


=


Ip 0

σvρ
′ σv


1 − ρ ′ρ


ε̃it
ω̃it


(4)
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where ω̃it ∼ N(0, 1) and independent of ε̃it . Using (4),we canwrite
(1) and (2) as

yit = z ′

1,itα + x′

itβ + σvρ
′Ω−1/2(xit − z2,itγ ) + ωit − uit (5)

whereωit ∼ N(0, (1−ρ ′ρ)σ 2
v ). Let ξ̃it = ωit −uit , σ 2

s = (1−ρ ′ρ)

σ 2
v + σ 2

u and λ = σu/(σv

√
1 − ρ ′ρ), then the probability density

function of ξ̃it is given by

f (ξ̃it) =
2
σs

φ


ξ̃it

σs


Φ


−λξ̃it

σs


, −∞ < ξ̃it < ∞ (6)

where φ(·) and Φ(·) denote the standard normal PDF and CDF re-
spectively. Let yi = (yi1, . . . , yiT )′ , xi =


x′

i1, . . . , x
′

iT

′
, zi =


z ′

i1,

. . . , z ′

iT

′ and which denotes the (m × 1) vector parameter θ as

θ =

α, β, γ , η, λ, σ 2

s

′ where η = −


σ 2
s

(1+λ2)(1−ρ′ρ)

1/2
Ω

−1/2
ε ρ,

then for the sample observations (yi, xi, zi), the joint log-likelihood
function of yi and xi is given by:

ln L(θ) = ln Ly|x(θ) + ln Lx (7)

where

ln Ly|x(θ) =

n
i=1

ln f (yi|xi, zi, θ) ∝ −
nT
2

ln σ 2
s

+
1
σs

n
i=1

lnΦ

−λ

yi − z ′

1,iα − x′

iβ

− η (xi − ziγ )


−
1

2σ 2
s

n
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2 (8a)

and

ln Lx =

n
i=1

ln f (xi) ∝ −
nT
2

ln (|Ωε|) −
1
2

n
i=1

T
t=1

ε′

itΩ
−1
ε εit (8b)

where in (8a) we have used all the exogenous variables in the
model zi =


z1,i, z2,i


instead of z2,i in the definition of εi from (2).

Let ∂ ln L(xi, zi, θ)/∂θ denote the (m×1) corresponding likelihood
score vector,wherem is the total number of parameters in (7). Then
we have

n−1
n

i=1

∂ ln f (xi, zi, θ)/∂θ = n−1
n

i=1

g1(xi, zi, θ) = 0. (9a)

From (2), the p-first order conditions for OLS are given by:

n−1
n

i=1

z ′

i (xi − ziγ ) = n−1
n

i=1

g2(xi, zi, γ ) = 0 (9b)

where zi =

z1,i, z2,i


. Eqs. (9a) and (9b) constitute a set of (p + m)

moment conditions that form the basis for our GMM estima-
tor. Define the moments vector G (xi, zi, θ, γ ) =


g1 (xi, zi, θ)′ ,

g2 (xi, zi, γ )′
′, then the joint GMM estimator takes the form

γ̂ , θ̂


= arg min
γ ,θ


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
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
(10)

where Wn is a symmetric positive definite weighting matrix. To
analyze the asymptotic property of the GMM estimator in (9), it
is useful to define the following partition matrices:

D =


G1,γ 0
G2,γ G2,θ


, Ω =


V11 V12
V21 V22


where G1,γ = E [∂g1(·)/∂γ ] , G2,γ = E [∂g2(·)/∂γ ] , G2,θ = E
[∂g2(·)/∂θ ] and Vij = E


gi(.)gj(·)′


for i, j = 1, 2. Then, under

suitable regularity conditions, see, for example, Hansen (1982) or
Newey (1984), it can be easily shown that the GMM estimator
given in (10) is consistent and
√
n

γ̂ , θ̂


→ N


0,

D−1ΩD−1′


.

A consistent estimator of the asymptotic covariance matrix of
γ̂ , θ̂


can be easily obtained by replacing the unknown parame-

ters in D and Ω respectively, with their consistent estimates from
(10). Note that the asymptotic variance of the GMM estimator is
unaffected by the choice of theweightingmatrixWn because in this
case, we have an exact identificationwhere the number ofmoment
conditions are exactly the same as the number of parameters to be
estimated. Thus in practice one can setWn = I .

The proposed GMM estimator in (10) is an extension of
the Newey (1984) GMM estimator for the nonlinear regression
case. It provides consistent and correct standard errors of the
estimated parameters, and it is fairly simple to compute given the
current existing computing power and readily automated GMM
estimation program. The asymptotic efficiency of the proposed
GMM estimator can be obtained with just one iteration so that
numerical searches can beminimized or avoided, albeit in practice
iterating to convergence would be more preferable.

3. Monte Carlo simulations

To examine the finite sample performance of our proposed
GMM estimator, we conduct some Monte Carlo experiments. To
this end, we consider the following data generating process (see
Kutlu, 2010):

yit = z1,itα + xitβ + vit − uit

xit = z2,itγ + εit , εit ∼ N

0, σ 2

ε


where uit is generated as i.i.d.

N 0, σ 2
u

 and the random vari-

able zit =

z1,it , z2,it

′ is generated by a VAR (1) process:

z1,it
z2,it


=

R2


z1,it−1
z2,it−1


+ eit , eit ∼ N (02, I2), and


z1,i1
z2,i1


∼ N


02, (I2 − R2)

−1
where 02 is a null vector of dimension 2 and R2 =


0.4 0.05
0.05 0.4


.

The vector of random errors (vit , εit)
′ is generated by


vit
εit


∼ N

02,


σ 2
v ρσvσε

ρσvσε σ 2
ε


. In our experiment, we fix α = β = 0.5, σ 2

ε

= 1, σu = σv = 1 and γ = 1. We set the values of ρ = {0.0,
0.4, 0.8} and consider two sample sizes: (n, T ) = (50, 15) and
(100, 15). The simulations are replicated 1000 times, and all the
computations are done using the GAUSS program. For the purpose
of comparison,we also compute the standardMLE estimators. Sim-
ulation results of the parameter estimates’ MSE are displayed in
Tables 1 and 2.

Our simulations show that when there is no correlation (i.e., no
endogeneity in the regressor), theGMMestimator performs almost
aswell as the standardMLE for all ranges of the parameters consid-
ered. However, when there is correlation and as the correlation in-
creases, theMLE deteriorates quickly and becomes severely biased,
while the proposed GMM estimator remains unbiased. In addition,
for a fixed T = 15, as the sample size n doubles, the estimatedMSE
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