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a b s t r a c t

This work considers the estimation of a network model with sampled networks. Chandrasekhar and
Lewis (2011) show that the estimationwith sampled networks could be biased due tomeasurement error
induced by sampling and propose a bias correction by restricting the estimation to sampled nodes to avoid
measurement error in the regressors. However, measurement error may still exist in the instruments and
thus induce theweak instrument problemwhen the sampling rate is low. For a local-aggregatemodel, we
show that the instrument based on the outdegrees of sampled nodes is free ofmeasurement error and thus
remains informative even if the sampling rate is low. Simulation studies suggest that the 2SLS estimator
with the proposed instrument works well when the sampling rate is low and the other instruments are
weak.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the literature on identification and estimation
of social network models has progressed significantly (see
Blume et al. (2011), for a recent survey). In his seminal work,
Manski (1993) introduces a linear-in-means social interaction
model with endogenous effects, contextual effects, and correlated
effects. Manski shows that this model suffers from the reflection
problem and the above-mentioned effects cannot be separately
identified. Bramoullé et al. (2009) generalize Manski’s linear-
in-means model to a local-average network model, where the
endogenous effect is represented by the average outcome of an
agent’s friends. They provide identification conditions for the local-
average model and suggest using the characteristics of indirect
friends as an instrument for the endogenous effect. Liu and
Lee (2010) consider a local-aggregate network model where the
endogenous effect is given by the aggregate outcome of the
friends. They show that in the local-aggregate model, the Bonacich
centrality (Bonacich, 1987) can be used as an additional instrument
to achieve identification and improve estimation efficiency.
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The above-mentioned papers assume that the outcomes,
covariates and connections of the agents in a network can be fully
observed, which may be unrealistic in some practical applications.
Sojourner (forthcoming) considers a linear-in-means model with
missing data on covariates. He shows that random assignment
of agents to peer groups can help to overcome the missing data
problem. On the other hand, Chandrasekhar and Lewis (2011)
consider the missing data problem on network connections. They
show that the estimation of sampled networks could be biased due
to the measurement error induced by sampling. They propose a
simple bias correction by restricting the estimation to the sampled
agents, whose friends are observed, to avoid measurement error
in the regressors. However, measurement errors may still exist
in the instruments. For the local-average model, the instrument
based on the characteristics of indirect friends is less informative
when the sampling rate is low and thus may induce the weak
instrument problem. In this work, we show that, for the local-
aggregatemodelwith samplednetwork data, the instrument based
on the number of direct connections, which is the leading-order
term of the Bonacich centrality, has no measurement error and
thus remains informative even if the sampling rate is low.

The rest of thework is organized as follows. Section 2 introduces
basic concepts and notation. Section 3 discusses identification and
estimation of the networkmodelwith samplednetworks. Section 4
provides simulation evidence for the finite sample performance of
the estimator. Section 5 concludes and generalizes the proposed
estimator to estimate a network model with network fixed effects.
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2. Networks and sampling

A network is represented by a graph G = (V , E)where V is a set
of n nodes and E is a set of ordered pairs of nodes called arcs. An arc
eij = (i, j) is considered to be directed from i to j where j is called
the head and i is called the tail of the arc.1 We assume there is no
arc that points to itself so that eii ∉ E for all i ∈ V .

Denote the set of m randomly sampled nodes by S. Following
Chandrasekhar and Lewis (2011), there are two different sampling
schemes. In the first sampling scheme, the researcher surveys a
set of m nodes and asks each node to nominate his/her friends
among the other m − 1 nodes sampled. The sampled network
G|S

= (S, E |S), where E |S
= {eij|eij ∈ E, i ∈ S, j ∈ S}, is

called the induced subgraph. In the second sampling scheme, the
researcher has information of all the nodes in V and survey a set of
m nodes and asks each node to nominate his/her friends from the
list of the n nodes in V . The sampled network GS

= (V , ES), where
ES

= {eij|eij ∈ E, i ∈ S, j ∈ V }, is called the star subgraph. In this
work, we focus on the estimation of a star subgraph. Fig. 1 gives an
example of a star subgraph.

3. Social network models with sampled networks

In a social network model, the connections in a network G =

(V , E) are represented by an n×n adjacencymatrix A = [aij]where
aij = 1 if eij ∈ E and aij = 0 otherwise. The model of the full
network is given by

Y = λ0AY + α0ln + Xβ0 + AXγ0 + ϵ. (1)

Here, Y = (y1, . . . , yn)′ where yi is the observed outcome of the ith
node. ln is an n × 1 vector of ones. X = (x′

1, . . . , x
′
n)

′ where xi is a
1×k vector of exogenous characteristics of the ith node. ϵ is an n×1
vector of i.i.d. innovations. According toManski (1993),λ0 captures
the endogenous effect, where an agent’s outcome may depend on
the outcomes of his/her friends, and γ0 captures the exogenous
(contextual) effect, where an agent’s outcome may depend on the
exogenous characteristics of his/her friends. How to identify and
estimate those two different effects has been a main interest for
social interaction models.

If (In − λ0A) is invertible, the reduced form equation of (1) is
given by

Y = (In − λ0A)−1(α0ln + Xβ0 + AXγ0 + ϵ). (2)

For identification and estimation of model (1), we need to find
instruments for AY . As (In − λ0A)−1

= In + λ0(In − λ0A)−1A, from
(2), we have

E(AY |A, X) = α0A(In − λ0A)−1ln + AXβ0

+ A2(In − λ0A)−1X(λ0β0 + γ0). (3)

We will discuss the potential instruments implied by (3) in the
following subsections.

Suppose we can observe (yi, xi) for all i ∈ V and arcs eij if and
only if i ∈ S in the data. In other words, the sampled network
can be represented by a star subgraph GS

= (V , ES). As argued
by Chandrasekhar and Lewis (2011), this sampling scheme is quite
common. For instance, consider the network data collected by
Banerjee et al. (2011) from 43 villages in Karnataka, India, in order
to study the diffusion of microfinance. The data collection process
includes a full census that collected demographic data on all
households in the villages and a follow-up survey of a subsample
of villagers asking them to nominate their social connections with

1 In this work, we focus on the estimation of directed graphs. The estimators can
be easily modified to estimate a undirected graph.

Fig. 1. (a) The full network; (b) a star subgraph with S = {1, 2, 3}.

other villagers. The resulting sampled network can be considered
as a star subgraph.

Denote the corresponding adjacency matrix based on the
sampled arcs by A∗

= [a∗

ij], where a∗

ij = 1 if eij ∈ ES and a∗

ij = 0
otherwise. The model with a sampled network is given by

Y = λ0A∗Y + α0ln + Xβ0 + A∗Xγ0 + ϵ. (4)

For the estimation of model (4), we consider two different
specifications of the network model, namely, the local-average
model and the local-aggregate model.

3.1. The local-average model

For network models, it is quite common to row-normalize the
adjacency matrix A such that the sum of each row of A is unity.
Let di =

n
j=1 aij denote the outdegree of node i (i.e. the number of

tails adjacent to a node). The row-normalizedA is given by Ā = [āij]
where āij = aij/di.2 With a row-normalized adjacency matrix, the
network model is

Y = λ0ĀY + α0ln + Xβ0 + ĀXγ0 + ϵ,

where ĀY and ĀX represent the average outcome and average
characteristics of the connections respectively. Therefore, we call
this model the local-average model.

We assume that |λ0| < 1 so that (In − λ0Ā)−1
=


∞

j=0(λ0Ā)
j.

As Āln = ln, we have α0Ā(In − λ0Ā)−1ln =
α0

1−λ0
ln. Hence, it follows

from (3) that

E(ĀY |Ā, X) =
α0

1 − λ0
ln + ĀXβ0

+ (Ā2X + λ0Ā3X + · · ·)(λ0β0 + γ0).

If λ0β0 + γ0 = 0, E(ĀY |Ā, X) becomes a linear combination of
ln and ĀX , and thus the local-average model cannot be identified.
If λ0β0 + γ0 ≠ 0, then Ā2X can be used as an instrument for
ĀY under the identification condition given by Bramoullé et al.
(2009). Let Z̄ = [ĀY , ln, X, ĀX], Q1 = [ln, X, ĀX, Ā2X], and P1 =

Q1(Q ′

1Q1)
−1Q ′

1. The 2SLS estimator of δ0 = (λ0, α0, β
′

0, γ
′

0)
′ is given

by δ̂n = (Z̄ ′P1Z̄)−1Z̄ ′P1Y .
For a star subgraph, let Ā∗ denote the row-normalized A∗.

As Ā∗ is misspecified, it introduces measurement errors to both
regressors and instruments. Chandrasekhar and Lewis (2011) show
that the 2SLS estimator for the local-average model with sampled
networks is inconsistent because the measurement error in the
instruments is correlated with that in the regressors. They propose
a simple correction by estimating themodel onlywith the sampled
nodes. Let āi (ā∗

i ) denote the ith row of Ā (Ā∗). As ā∗

i = āi for i ∈ S,
there is no measurement error in the regressors [ā∗

i Y , 1, xi, ā
∗

i X]

2 For simplicity, we assume that di > 0 for all i ∈ V .
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