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Abstract

In a myelinated axon, there exist many nodes of Ranvier where myelin sheaths are absent and action potentials are actively regenerated.
Hence, a myelinated axon is a nonuniform cable where myelinated parts and unmyelinated nodes of Ranvier are described by different
cable equations. For the modelling of a myelinated axon, the compartment model based on finite volume or finite difference discretization
was dominantly used. In this paper, we propose a hybrid approach where an eigenfunction expansion combined with singular perturbation
is employed for myelinated parts, and demonstrate that the proposed scheme can achieve an order of magnitude accuracy improvement for
low order models. Moreover, it is also shown that the proposed scheme converges faster to attain a given accuracy. Hence, for simulation of
myelinated axons, the proposed scheme can be an attractive alternative to the compartment model, that leads to a low order model with much
higher accuracy or that converges faster for a given accuracy.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Myelinated axons are critical in brain information process-
ing because they play a central role in fast and reliable long
range transmission of information between different brain ar-
eas. The defective myelin sheath can result in severe distur-
bances of motor and sensory functions. For fast transmission of
information, the cable is sheathed by myelin that achieves two
orders of magnitude increase and decrease of membrane resis-
tance and capacitance, respectively. This indeed results in the
two order of magnitude increase in spatial transmission speed
whereas the order of time constant magnitude remains the same
[1]. However, for long range communication, the signal needs
to be amplified intermittently. For this, there exist the so-called
nodes of Ranvier where the myelin sheath is absent and active
ionic channels are present to amplify the signal.
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Due to the presence of the nodes of Ranvier, a myelinated
axon is not a uniform cable. Hence, it is easier to model sepa-
rately the myelinated parts and the unmyelinated nodes of Ran-
vier. A node of Ranvier is small enough to be modelled by a
single compartment. On the contrary, a myelinated part is de-
scribed by a linear cable equation that is a parabolic partial
differential equation. Due to the complexity associated with
the continuous spatial variation in partial differential equa-
tions, a spatial discretization scheme is often adopted to get
a system of ordinary differential equations (ODEs). For this,
the compartment model based on finite volume or finite dif-
ference scheme was settled as a standard technique. For in-
stance, the existing neuron simulators such as NEURON [2]
and GENESIS [3] are based exclusively on the compartment
model.

It is well known in computational physics that the spectral
method including eigenfunction expansion techniques con-
verges much faster than any other computational schemes for
the problems with simple geometries [4]. Hence, if the spectral
method is used, the same accuracy is achieved with a smaller
number of approximate ODEs. In other words, the same
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number of ODEs will approximate the original PDE with a
higher accuracy. Hence, the spectral method is better in finding
a low order model with a reasonable accuracy as well. Indeed,
the finite volume or finite difference method employs the local
basis functions that are designed to represent the local variation
of solution. It is hard for them to achieve with a small number
of local basis functions a good approximation of the global spa-
tial variation of solution. On the contrary, the spectral method
uses global basis functions that are able to capture the global
spatial features of solution with relatively small numbers of
them.

The eigenfunction expansion of linear cable equations has
been extensively studied in search for analytic solutions. Such
results are well documented in [5]. However, these analytic re-
sults are valid only when the interaction with nonlinear ele-
ments such as soma and node of Ranvier is ignored. If such
an interaction is considered, the entire problem becomes non-
linear so that an analytic solution is almost impossible to find.
Hence, its real power in the reduced model and simulation
of linear cables has not been examined. Since a myelinated
part has a simple geometry, it seems reasonable to predict
that the standard eigenfunction expansion can be applied to
the cable as successfully as to the problems in computational
physics. However, when time-varying boundary stimulation is
severe, the standard eigenfunction expansion approach with
the Galerkin truncation [6] of fast and stable high frequency
eigenmodes is in general no better than the compartment ap-
proach [7]. Indeed, in most problems considered in compu-
tational physics, the boundary stimulation terms were absent.
In these cases, zeroing fast and stable high frequency eigen-
modes is justifiable since they converge quickly to their steady
states that are quite small, if not zero, in most cases. How-
ever, when the external stimulation term is very severe as in
a cable subject to a sequence of action potentials in a soma
or a node of Ranvier, the deviations of high frequency modes
from their very small steady states of the system without ex-
ternal stimulation introduce nonnegligible errors. To avoid this
difficulty, we employed singular perturbation instead of the
Galerkin truncation. In singular perturbation, the quasi-steady
states of fast and stable high frequency modes that change
subject to time-varying stimulations are used to capture the
deviations. Indeed, singular perturbation was identified as a
critical tool in a low dimensional controller design for the
parabolic PDE systems that are externally excited by con-
trol inputs and disturbances [8,9]. Adopting singular perturba-
tion, we demonstrated that eigenfunction expansion approach
becomes as powerful in the reduced model and simulation
of the neurons with few dendritic cables as in computational
physics.

In this paper, for the reduced model and simulation of myeli-
nated axon, we will apply the aforementioned eigenfunction
expansion technique with singular perturbation to each myeli-
nated part. For low order models, the proposed scheme achieved
an order of magnitude accuracy improvement. Moreover, to
achieve a given accuracy, the proposed scheme converged faster.
Hence, the proposed scheme is superior than the conventional
compartment model approach.

2. Methods

In this section, we consider a myelinated axon with 10 nodes
of Ranvier as shown in Fig. 1. A myelinated part of the myeli-
nated axon is described by the standard one-dimensional pas-
sive cable equation:
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where

v = V − Vrest,

V is the membrane potential, Vrest is the resting potential of the
cable, ra is the axial resistance per unit length of the cable, rm
is the membrane resistance per unit length of the cable, cm is
the membrane capacitance per unit length of the cable.

For simplicity, we employ dimensionless time and space vari-
ables. For this, let x = z/L, where L is the length of a myeli-
nated part. Then,
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where the time constant �m and the dimensionless electrotonic
length � are defined by
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respectively. This equation has two parameters �m and �. How-
ever, the dependence on �m can be eliminated by scaling the
time variable as t = �/�m. Then,

�v

�t
= �2 �2v

�x2 − v.

Notice that the integration of this equation over the unit time
interval in t corresponds to that of the original equation over
the time interval �m in �. Notice that the solution in the original
time and space coordinate can be readily recovered.

For i = 1, . . . , 10, the nonterminal myelinated parts are de-
scribed by
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soma 

node of Ranvier 

myelinated part 

Fig. 1. Myelinated axon with soma.
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