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a b s t r a c t

Efficiency of the realized variance of an asset is improved by taking advantage of another asset whose
return is cross-sectionally correlated with that of the asset and is less sensitive to market microstructure
noises permitting higher frequency sampling than the original asset.
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1. Introduction

Recently, realized variances attracted much attention as
estimators of the latent conditional variances of financial assets.
A lot of papers have appeared in the literature. For example,
Andersen and Bollerslev (1998) estimated conditional variance of
ex post daily foreign exchange by daily realized variance based
on 5-min sampling, i.e., sum of 288 squared 5-min returns. Good
reviews were provided by Poon and Granger (2003), Barndorff-
Nielsen and Shephard (2007), McAleer and Medeiros (2008), and
others.

The five-minute frequency is a common choice which is re-
garded as the highest possible frequency permitting no significant
marketmicrostructure noise due to the asynchronous trading, bid-
ask spread, infrequent trading, and others. In order to improve the
realized variance for an asset, say asset 1, it is worth finding an-
other asset, say asset 2,whose return is cross-sectionally correlated
with the return of the original asset and is subject to smaller mar-
ketmicrostructure noises. Asset 2 can be observedmore frequently
than the original asset, providing extra information for improving
the realized variance of asset 1.
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This observation leads us to study estimation of the realized
variances of two asset processes under two different sampling
frequencies.Weadopt the factoring likelihoodmethodof Anderson
(1957) which is also given in Little and Rubin (2002). In this
method, from the high frequency data set of asset 2, the
realized variance of asset 2 is computed and, from the low
frequency combined data set for (asset 1, asset 2), the realized
regression coefficient and the realized variance are computed
for the residual process in the regression of return of asset 1
on return of asset 2. These three estimators are asymptotically
efficient. Improved realized variance of asset 1 is computed from
these three efficient estimators. Moreover, the realized covariance,
the realized correlation coefficient, and the realized regression
coefficients are also constructed, which are more efficient than
those based on low frequency combined data set.

Limiting distributions of the improved estimators are derived,
which are normal distributions. Asymptotic efficiencies of the
estimators as well as finite sample efficiencies are investigated,
revealing that considerable efficiency gains are attained for highly
correlated cases.

2. Estimators

We consider a two dimensional continuous stochastic volatility
semimartingale y∗(t) = (y1(t), y2(t))′ defined by

y∗(t) = α∗(t) + m∗(t),
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where α∗(t) is a process with a finite variation path,

m∗(t) =

 t

0
Θ(u)dw(u),

Θ is an instantaneous or spot covolatility process having elements
that are all cadlag, and w(t) is a two-dimensional standard
Brownian motion.

Quadratic variation process is defined by

[y∗
](t) = plimM→∞

M
j=1

{y∗(tj+1) − y∗(tj)}{y∗(tj+1) − y∗(tj)}′

for any sequence of partitions 0 = t0 < t1 < · · · < tM = t such
that supj(tj+1 − tj) → 0 asM → ∞. Under some mild conditions,

[y∗
](t) =

 t

0
Σ(u)du,

whereΣ(t) is the instantaneous or spot covariancematrix process
defined by

Σ(t) = Θ(t)Θ ′(t).

Let h be the length of a period. Then the quadratic variation of
period i is

[y∗
]i = [y∗

](ih) − [y∗
]((i − 1)h) =

 ih

(i−1)h
Σ(u)du.

The i-th period quadratic variation is usually estimated from
M-equally spaced observations of the period. The j-th intra-h
return for the i-th period is

(yjM)i = y∗((i − 1)h + jh/M) − y∗((i − 1)h + (j − 1)h/M),

j = 1, . . . ,M.

The i-th period realized variance matrix defined by

[y∗

M ]i =

M
j=1

(yjM)i(yjM)′i

is a consistent estimator of [y∗
]i as M → ∞.

We assume that y∗

2 is more frequently observed than y∗

1 , say
K = τM times per period, where τ ≥ 1 is a positive integer. The
j-th intra-h return of y2 for the i-th period is

(y2jK )i = y∗

2((i − 1)h + jh/K) − y∗

2((i − 1)h + (j − 1)h/K),

j = 1, . . . , K .

Wewill say that y∗

1 is observed by ‘‘M-sampling’’ and y∗

2 is observed
by ‘‘K -sampling’’. Note thatM < K .

Let (σkℓ)i be the (k, ℓ)-element of [y∗
]i, k, ℓ = 1, 2. Let (σ̂kℓM)i

=
M

j=1(ykjM)i(yℓjM)i be the (k, ℓ)-element of [y∗

M ]i, k, ℓ = 1, 2.
Let (σ̂22K )i = [y∗

2K ]i =
K

j=1(y2jK )2i . We note that (σ̂22M)i is not
efficient for (σ22)i because (σ̂22K )i is a better estimator. We will
show that (σ̂11M)i is not efficient by constructing a more efficient
estimator.

In order to improve (σ̂11M)i, we adopt the factoring likelihood
approach of Anderson (1957). The point is that the returns of asset
2 for times at which asset 1 is not observed, being cross-sectionally
correlated with the unobserved returns of asset 1, can improve the
realized variance of asset 1.

From the high-frequency data set of y2, the marginal actual
variance (σ22)i is efficiently estimated by (σ̂22K )i. From the low-
frequency combined data set of (y1, y2), the following conditional
quantities

(β12)i = (σ12)i/(σ22)i, (σ11.2)i = (σ11)i − (σ12)
2
i /(σ22)i

are estimated by

(β̂12M)i = (σ̂12M)i/(σ̂22M)i,

(σ̂11.2M)i = (σ̂11M)i − (σ̂12M)2i /(σ̂22M)i.

All the other estimators are constructed from these three estima-
tors (θ̂)i = [(σ̂22K )i, (β̂12M)i, (σ̂11.2M)i]. Following the approach of
Anderson (1957), we can show that, in case of constant instan-
taneous covariance matrix, the estimator (θ̂)i is the maximum
likelihood estimator of [(σ22)i, (β12)i, (σ11.2)i] and hence is asymp-
totically efficient. Now, an efficient estimator of (σ11)i is obtained
from the relation

(σ11)i = (σ11.2)i + (β12)
2
i (σ22)i

as given by

(σ̂11)i = (σ̂11.2M)i + (β̂12M)2i (σ̂22K )i.

Also, the actual covariance, the actual regression coefficient and
the actual correlation coefficient is given by

(σ12)i = (β12)i(σ22)i,

(β21)i = (σ12)i/(σ11)i = (β12)i(σ22)i/(σ11)i,

(ρ)i = (σ12)i/{(σ22)i(σ11)i}
1/2

= (β12)i


(σ22)i/(σ11)i

are efficiently estimated by

(σ̂12)i = (β̂12M)i(σ̂22K )i,

(β̂21)i = (β̂12M)i(σ̂22K )i/(σ̂11)i,

(ρ̂)i = (β̂12M)i


(σ̂22K )i/(σ̂11)i,

respectively. In the following theorem, we state limiting distribu-
tions of the improved estimators.

Theorem 1. Assume that (i) α∗ and Σ are jointly independent of
w, (ii) δ−1

 (i−1)h+jδ
(i−1)h+(j−1)δ Σkk(u)du, k = 1, 2 are bounded away from

0 and ∞ uniformly in j and δ, (iii) for k = 1, 2, the mean process
α∗

= (α∗

1 , α
∗

2)
′ satisfy that, as δ → 0,

δ−3/4 max
1≤j≤M

|α∗

k ((i − 1)h + jδ) − α∗

k ((i − 1)h + (j − 1)δ)|

= o(1), k = 1, 2.

Then as M → ∞, conditionally on the path of α∗ and Σ , we have

(h/M)−1/2
{(σ̂11)i − (σ11)i}

d
→ N[0, 2(σ11)

2
i {(ρ)4i /τ + 1 − (ρ)4i }],

(h/M)−1/2
{(σ̂12)i − (σ12)i}

d
→ N[0, (σ11)i(σ22)i{2(ρ)2i /τ + 1 − (ρ)2i }],

(h/M)−1/2
{(β̂21)i − (β21)i}

d
→ N[0, ((σ22)i/(σ11)i)(1 − (ρ)2i )

× {2(1 − (ρi)
2)(ρ)2i (1 + τ−1) + (1 − 2(ρ)2i )

2
}],

(h/M)−1/2
{(ρ̂)i − (ρ)i}

d
→ N[0, 2−1

{1 − (ρ)2i }{(ρi)
2τ−1

+ 2 − (ρ)2i }],

where
d

→ denotes convergence in distribution.

Note that, in the case of τ = 1, Theorem 1 reduces to
the limiting distribution of (σ̂11M)i, (σ̂12M)i, (β̂21M)i, (ρ̂M)i based
on M-sampling established by Barndorff-Nielsen and Shephard
(2004).
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