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A feature is a distinctive or characteristic measurement, transform, structural component extracted from
a segment of a pattern. Features are used to represent patterns with the goal of minimizing the loss of
important information. The discrete wavelet transform (DWT) as a feature extraction method was used in
representing the spike-wave discharges (SWDs) records of Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats.
The SWD records of WAG/Rij rats were decomposed into time–frequency representations using the DWT
and the statistical features were calculated to depict their distribution. The obtained wavelet coefficients
were used to identify characteristics of the signal that were not apparent from the original time domain
signal. The present study demonstrates that the wavelet coefficients are useful in determining the dy-
namics in the time–frequency domain of SWD records.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The Wistar Albino Glaxo/Rijswijk (WAG/Rij) strain is an inbred
strain of Wistar rats in which all animals present generalized non-
convulsive epileptic seizures [1]. These seizures appear as a sudden
interruption of consciousness and are characterized in the cortical
electroencephalogram (EEG) by the occurrence of bilateral and syn-
chronous spike-wave discharges (SWDs) [2].

SWDs seen in WAG/Rij rats share many clinical characteristics
with typical human absence epilepsy and exhibit a similar phar-
macological reactivity to drugs [1,3,4]. Therefore, WAG/Rij strain of
rats is considered to be a valid animal model of human absence
epilepsy [5,6]. Nowadays this genetic model of absence epilepsy is
commonly used for studying the efficacy of new antiepileptic drugs
on the occurrence of SWD and the pathogenesis of absence epilepsy
[2,7]. However, the mechanisms underlying SWDs, still remain un-
clear [8]. Although the analysis of the time–frequency structure of
SWDs may contain important information about the mechanisms of
this type of brain paroxysmal activity and can play a significant role
in the investigation of antiepileptic drugs, the dynamics of SWDs in
rodent models have been poorly investigated [9,10]. It is usually in-
dicated that in animals with the absence epilepsy the typical SWDs
have a mean frequency of 8.7Hz [3]. In addition, by means of the
fast Fourier procedure it was shown that the frequency of the SWD
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(G. �Ilbay), sahindeniztr@yahoo.com (D. �Sahin), nates@kou.edu.tr (N. Ate �s)
URL: http://edubeyli.etu.edu.tr/ (E.D. Übeyli).
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is approximately 10–11Hz at the beginning of and 7–8Hz at the end
of the discharges [11].

Until now, only a few studies have used modified wavelet trans-
form (WT) for the analysis of the time frequency of SWD. Bosnyakova
et al. used a modified Morlet WT to describe significant parame-
ters of the dynamics in the time–frequency domain of the dominant
rhythm of SWD [9]. In a recent paper, analysis of the time–frequency
pattern of SWD in patients with absence seizures and WAG/Rij rats
revealed that time–frequency dynamics of SWDs had similar prop-
erties but in a different frequency range [10].

A feature extraction is the determination of a feature or a feature
vector from a pattern vector. In order to make pattern processing
problems solvable one needs to convert patterns into features, which
become condensed representations of patterns, ideally containing
only salient information. Feature extraction methods could be based
on either calculating statistical characteristics or producing syntac-
tic descriptions. The feature selection process usually is designed to
provide a means for choosing the features which are best for classi-
fication optimized against on various criteria. The feature selection
process performed on a set of predetermined features [12–14].

Features are selected based on either (1) best representation of a
given class of signals or (2) best distinction between classes. There-
fore, feature selection plays an important role in classifying systems
such as neural networks. For the purpose of classification problems,
the classifying system has usually been implemented with rules us-
ing if–then clauses, which state the conditions of certain attributes
and resulting rules. However, it has proven to be a difficult and time
consuming method. From the viewpoint of managing large quanti-
ties of data, it would still be most useful if irrelevant or redundant
attributes could be segregated from relevant and important ones,
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although the exact governing rules may not be known. In this case,
the process of extracting useful information from a large data set
can be greatly facilitated [12–14].

In the feature extraction stage, numerous different methods can
be used so that several diverse features can be extracted from the
same raw data. The discrete wavelet transform (DWT) provides very
general techniques which can be applied to many tasks in signal
processing. Wavelets are ideally suited for the analysis of sudden
short-duration signal changes. One very important application is
the ability to compute and manipulate data in compressed param-
eters which are often called features [15]. Thus, the time-varying
signals, consisting of many data points, can be compressed into a
few parameters by usage of the DWT. These parameters character-
ize the behavior of the time-varying signals. This feature of using
a smaller number of parameters to represent the time-varying sig-
nals is particularly important for recognition and diagnostic pur-
poses [16–23]. The objective of the present study in the field of
detection of changes in time-varying signals is to extract the rep-
resentative features of the signals under study. In this study the
dynamic parameters in the time–frequency domain of SWD were
analysed and results represent good additional tool (wavelet coeffi-
cients) for discriminating this epileptic event and new perspective
for future investigations.

2. Data description

Eight male WAG/Rij rats, weighing 230–300g were used in this
study. Animals were maintained on a 12–12h light/dark cycle and
access to food and water ad lib. All experimental procedures were
carried out with the approval of the Kocaeli University Ethics Com-
mittee.

Under the ketamine (100mg/kg, ip)–chlorpromazine (1mg/kg,
ip) anesthesia, tripolar EEG recording electrodes (Plastic One Prod-
ucts Company, MS 333/2A) were placed into the cortex; one in the
frontal region (coordinates with skull surface flat and bregma zero-
zero: A2.0, L-3.5) and a second one in the parietal region (bregma
zero-zero: P-6.0, L4.0). The reference electrode was placed in the
cerebellum. Following surgery, animals were allowed to recover for
10 days. After the rats habituated to the recording conditions, EEG
recordings started at 09.00 and lasted for 1h (MP100 data acquisition
unit EEG100; Biopac System, St Barbara, CA, USA. www.biopac.com).
Artifact-free condition was obtained in Faraday cage. EEG recordings
were amplified, filtered between 1 and 60Hz, digitalized with sam-
ple rate frequency of 500Hz and stored for off-line analysis. The EEG
data were pre-processed by an automatic routine, which searched in
the EEGs for the presence of high-voltage activity with duration of
4–8 s. By this routine, the selected periods of aberrant EEG phenom-
ena were visually inspected by a trained expert who determined, on
the basis of the published criteria [3], whether these aberrant EEG
phenomena were SWDs. The number of SWDs was counted and its
duration was determined. Minimally 4, maximally 12 SWDs per an-
imal were analyzed using the DWT. Example of the cortical EEG of
a typical SWD in WAG/Rij rat is shown in Fig. 1.

3. Wavelet transform

WT is designed to address the problem of nonstationary sig-
nals. It involves representing a time function in terms of simple,
fixed building blocks, termed wavelets. These building blocks are
actually a family of functions which are derived from a single gen-
erating function called the mother wavelet by translation and di-
lation operations. Dilation, also known as scaling, compresses or
stretches the mother wavelet and translation shifts it along the time
axis.
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Fig. 1. Example of the cortical EEG of a typical spike-wave discharges in WAG/Rij rat.
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Fig. 2. Subband decomposition of discrete wavelet transform implementation; g[n]
is the high-pass filter, h[n] is the low-pass filter.

The WT can be categorized into continuous and discrete. Contin-
uous wavelet transform (CWT) is defined by

CWT(a, b) =
∫ +∞

−∞
x(t)�∗

a,b(t) dt, (1)

where x(t) represents the analyzed signal, a and b represent the scal-
ing factor (dilatation/compression coefficient) and translation along
the time axis (shifting coefficient), respectively, and the superscript
asterisk denotes the complex conjugation. �a,b(·) is obtained by scal-
ing the wavelet at time b and scale a:

�a,b(t) = 1√|a|�
(
t − b
a

)
, (2)

where �(t) represents the wavelet.
Continuous, in the context of the WT, implies that the scaling and

translation parameters a and b change continuously. However, cal-
culating wavelet coefficients for every possible scale can represent
a considerable effort and result in a vast amount of data. Therefore,
the DWT is often used. The WT can be thought of as an extension
of the classic Fourier transform, except that, instead of working on a
single scale (time or frequency), it works on a multi-scale basis. This
multi-scale feature of the WT allows the decomposition of a signal
into a number of scales, each scale representing a particular coarse-
ness of the signal under study. The procedure of multi-resolution
decomposition of a signal x[n] is schematically shown in Fig. 2. Each
stage of this scheme consists of two digital filters and two downsam-
plers by 2. The first filter, g[·] is the discrete mother wavelet, high-
pass in nature, and the second, h[·] is its mirror version, low-pass
in nature. The downsampled outputs of first high-pass and low-pass
filters provide the detail D1 and the approximation A1, respectively.
The first approximation A1 is further decomposed and this process
is continued as shown in Fig. 2.

All WTs can be specified in terms of a low-pass filter h, which
satisfies the standard quadrature mirror filter condition:

H(z)H(z−1) + H(−z)H(−z−1) = 1, (3)
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