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1. Introduction

A frequent observation made by empirical researchers analyzing
procurement auctions for road construction work is that construction
firms experience capacity constraints, whereby the cost to a firm of
adding another contract to its roster increases with its existing
capacity utilization (Bajari and Ye, 2003; De Silva et al., 2002, 2003;
Jofre-Bonet and Pesendorfer, 2003)." Since the cost distribution of the
firm that wins the current auction worsens as a result of the capacity
constraint, such firms face an intertemporal tradeoff in their profits:
higher profits in the current period come at the cost of lower profits in
future periods. Strategic forward-looking firms realize that they incur
an opportunity cost or option value in the future by winning the
current auction. The behavior of bidders in such auction settings has
been theoretically analyzed by Grimm (2007), Jeitschko and Wolf-
stetter (2002), Jofre-Bonet and Pesendorfer (2006), and Saini (2009).
The typical structure of equilibrium strategies is one where a bidder's
bid equals the bidder's option value plus the amount that it would
have bid in a static one-shot auction. Since the option value is just
another markup over cost, bids increase with costs. However, none of
the existing models consider the case where-as is common practice in
procurement auctions-the procurer may impose a reserve price so
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! Here capacity utilization is defined as the ratio of the firm's outstanding work
commitments to its size. The idea underlying this effect is that since a firm's capacity
tends to stay fixed in the short term, as its work commitments increase, it must
augment its capacity by paying overtime wages, renting additional equipment, moving
scarce equipment around from site to site, and using less productive (perhaps older)
equipment, all of which typically lead to higher unit costs.
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that bids higher than the reserve price are rejected. Moreover, the
structure of the equilibrium in these models does not allow for a
reserve price.

In this paper, we solve for the equilibrium bidding strategies of n
capacity-constrained bidders in a sequence of two auctions where the
procurer imposes a reserve price in the first period auction. Allowing
for a reserve price changes the equilibrium in an unexpected way. We
find that the equilibrium bidding strategies are no longer strictly
increasing over the range of costs for which a bidder wins with a
positive probability. More specifically, there exists an interval of a
bidder's costs over which it always bids the reserve price, thus
winning the auction with positive probability. Therefore, there exists
amass point in the distribution of winning bids at the reserve price. As
usual, we also find a cutoff cost level such that firms with costs higher
than the cutoff choose to drop out of the first auction by bidding some
amount above the reserve price.

While we present our analysis in the context of a procurement
auction, our analysis applies to a more general class of sequential
auction models. For instance, an intertemporal linkage analogous to
our model is possible in art auctions. An art collector interested in
acquiring a series of paintings by a particular painter might find that
winning one painting increases her valuation in future auctions for
paintings from the same series. Our analysis predicts that if the

2 Suppose there are two sequential auctions. Starting from symmetry, in the absence
of reserve prices, there is only one possible configuration of asymmetry in the second
auction: someone wins the first auction and everyone else loses. However, in the
presence of reserve prices, it is also possible that no one wins the first auction. This
makes the bidding decision in the first auction more complicated than simply adding
the option value to static bids.
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auctioneer imposes a reserve price in this setting, several bidder types
will “bunch” at the reserve price. In addition to theorists, this result
should also be of interest to researchers interested in recovering the
underlying value distributions of bidders from their observed bid
distributions in dynamic auction markets.

2. A model with reserve prices

A procurer auctions off two identical projects using a sequence of
two first-price procurement auctions. There are n risk-neutral bidders,
each of whom wishes to win both contracts. The costs of the bidders
are independent private values. In the first auction, all bidders draw
their cost for the project from the interval [c,c] according to a
continuously differentiable probability distribution F(c), with density
f(c) that is bounded away from 0 over the support. The auctioneer
imposes a reserve price of R in the first auction.? In each round the
bidders simultaneously submit sealed bids, and the contract is
awarded to the lowest bidder. If there is more than one bidder at
the lowest bid (which happens in equilibrium at R with positive
probability), then the procurer awards the contract to each bidder
with equal probability. A bidder can choose to drop out of the first
auction by bidding an amount OUT>R.

Due to being capacity-constrained, the winning bidder experi-
ences a first order stochastic dominance shift in its cost distribution on
winning the first auction. As a result, the second auction becomes a
one-shot asymmetric auction with one ‘weak,’ and n—1 identical
‘strong’ bidders. Standard results from the theory of static asymmetric
auctions allow us to make the following abstraction regarding the
profits in the second period auction (Maskin and Riley, 2000): if there
is a winner in the first auction, then it gets a payoff of i, in the second
auction, and the remaining n—1 bidders get a payoff of m; in the
second auction, where m,,<m. If no one wins in the first period auction,
all bidders get an expected payoff of iy in the second auction, where
m,<To<m,. The idea is that the winning bidder's payoff in the second
auction m,, is lower than what its payoff would have been (1) if no
one had won the first auction. For a similar reason, the second period
payoff of a losing bidder m;, is greater than my. Making this abstraction
allows us to avoid the needless complication of describing the
straightforward bidding strategies and profit relationships in the
second period auction.

We consider the case where the reserve price is binding, that is,
R—(m—my)< c. Otherwise, the reserve price does not affect behavior
in the auction. We will explain the implication of this assumption
below.

3. Equilibrium

Our main result is solving for a Perfect Bayesian Nash Equilibrium
(PBNE) of this auction. While the formal statement of the result is
summarized in Proposition 1, we now describe the structure of the
equilibrium in words. Let ¢/; denote the lowest cost draw among the
rivals of bidder i in the first auction. The equilibrium bidding strategy

in Eq. (1) can be described in three parts.

1. Over the cost interval [ ¢, R — (m;—m,)], the players use monoton-
ically increasing strategies. Each cost type's bid is the sum of
two components. The first component is the expected minimum of
R— (m—m,) and cj”;", conditional on cj";L”, being higher than the

bidder's cost type. This is a standard static bid. The second

component (m;—m,,) is the option value of the bidder in the case

where it is the winner in the first auction.

3 The case where the procurer imposes a reserve price in the second auction as well
is straightforward, since then the second auction becomes a simple static auction with
a reserve price.

2. Interestingly, all cost types in the interval [R — (m, —,,), ¢*] bid the
reserve price R; here ¢* is as defined in Proposition 1. Thus, there is
a mass point in the distribution of equilibrium bids at R. Another
interesting feature of bidding over this cost range is that the
bidders bid R in spite of the fact that by doing so they will not fully
recover ¢+ (m—rm,), their cost draw plus the option value
contingent on winning. This is so because with positive probability,
the profit of the losing bidder is 1o instead of m;. Since mp<m,, the
expected payoff upon losing the auction is lower.

3. All cost types higher than ¢* drop out of the first auction by bidding
OUT>R.

Proposition 1. Each bidder bidding according to the following
symmetric bidding strategy in the first auction constitutes a PBNE of
the two-period auction.
E[min{R—(m—,), i} c< ] + (m—m,)  for ce[cR—(m—m,)]
b(c)={ R for ce[R—(m—
OouT for ce[c”,c].
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Proof. We will show that the bidding strategy in Eq. (1) is optimal for
a bidder given that the other bidders are playing the same strategy.

We will first write down an expression for a bidder's profits upon
following this strategy. Since all of them bid R, the winning probability
of cost types in the interval [R— (m,—m,), ¢*] is given by:

1

n—1
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Here, 1 Ci=1[1=F(c')|*[F(c")—F(R—(m—m,))"~'~* is the proba-
bility that k of the other n — 1 bidders drop out of the first auction, and
the remaining n —k — 1 bidders draw a cost in the interval [R — (m;,—

m,,), ¢*], causing them to bid R, which causes the procurer to award the
project to each of the n — k bidders, who bid R, with probablhty ! (tle—

breaks). Given the strategies in Eq. (1), the expected profit of a bldder
that gets a cost draw of ¢, and bids b(c), is given by:

(b(©)—c + 1, )A=F()"™" + m(1—(1—=F()"™") if b(o)<R
H(b(c); ) = § (R—c + M,)Pyip (Ric”) + M (1=Pyin(RiC")) if b(c) =
Mo(1=F(c)"™ " + m(1—(1—F(c")"™) if b(c) = OUT>R.

(2)

If the bidder chooses to participate in the first auction and it bids less
than R, then (1—F(c))" ! is the probability that the bidder wins the
auction. If the bidder chooses to participate in the first auction with a bid
of R, then Pin(R; ¢¥) is the probability that it wins the auction. If the
bidder drops out of the auction, then (1 —F(c*))" " is the probability
that every other bidder drops out as well, in which case the bidder gets a
profit of m,. The expression 1— (1—F(c*))" ! represents the proba-
bility that at least one of the rival bidders stays in the auction, in which
case the bidder's payoff is ;. The expression in Eq. (2) simplifies to:

{ b(¢)—c—(m—m,))(1— F(C))” ' if b(o) <
l_[(b(C),C) = ( —C— (nl w)) wm( + i if b(C - R
(My—T)(1—F(c)"™ " + n, if b(c) = OUT > R.
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