
Improved GMM estimation of the spatial autoregressive error model☆

Matthias Arnold ⁎, Dominik Wied
Institut für Wirtschafts- und Sozialstatistik, TU Dortmund, Dortmund, Germany

a b s t r a c ta r t i c l e i n f o

Article history:
Received 23 February 2009
Received in revised form 31 March 2010
Accepted 5 April 2010
Available online 13 April 2010

Keywords:
GMM estimation
Spatial autoregression
Regression residuals

JEL classification:
C13
C21

Wesuggest an improvedGMMestimator for theautoregressiveparameter of a spatial autoregressive errormodel by
taking into account that unobservable regression disturbances are different from observable regression residuals.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction and summary

Disturbances of regression models are typically not observable, so
inference on the disturbancesmust rely on the regression residuals. It is
well known that under general conditions, the residuals converge to the
disturbances when the sample size increases, see e.g. Rao and
Toutenburg (1995). However, the statistical properties of the dis-
turbances and the residuals are different in finite samples.

This paper considers a linear regression model where the dis-
turbances are generated by a spatial autoregressive model introduced
by Cliff and Ord (1973) andwhere the parameter of main interest is the
spatial autoregressive parameter.

Since the calculation of the maximum likelihood estimator can be
computationally expensive, Kelejian and Prucha (1999) suggest a
generalized method of moments (GMM) estimator, which uses three
theoretical moments of the disturbances and equates them to the
corresponding empirical moments of the residuals. This estimator has
been applied to industrial specialization by Tingvall (2004), to
microlevel data by Bell and Bockstael (2000) and to agricultural data
by Schlenker et al. (2006) and Anselin et al. (2004). It has also been
extended in several ways, for example to panel data by Druska and

Horrace (2004) and to systems of simultaneous equations by Kelejian
and Prucha (2004).

We suggest a variation of this estimator that is motivated by the
following argument: If the empirical moments must rely on the
residuals, the theoretical moments should be calculated in terms of
the residuals, too. The computational costs are of the same order of
magnitude for both estimators. Although both estimators coincide as
sample size increases, our version is superior in finite samples, both in
terms of bias and mean squared error. As a consequence, significance
tests for the regression coefficients are less distorted because estimation
of the corresponding covariance matrix is more accurate.

An empirical example illustrates our results. For a data set of
Indonesian rice farms previously analyzed by Erwidodo (1990) and
Druska andHorrace (2004), statistically significant effects of someof the
covariates disappear if we implement the proposed modification.

In the following, we restrict ourselves to ordinary least squares
regression in order to keep notation as simple as possible. Themain idea
however also applies to generalized least squares or nonlinear
regression.

2. The model and the main result

We consider a linear regression model

y = Xβ + u; ð1Þ

where y is the (n×1)-vector of observations on the dependent variable,
X is the nonstochastic (n×k)-matrix on the explanatory variables and β
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is the (k×1)-vector of unknown model parameters. We assume that u,
the (n×1)-vector of disturbances, is generated by a spatial autoregres-
sive model,

u = ρWu + ε; ð2Þ

whereW (n×n) is a weighting matrix of known constants, ρ is a scalar
parameter and ɛ is an (n×1)-vector of innovations. We impose the
following assumptions.

Assumption 1. (a) All diagonal elements of W are zero. (b) The row
sums of W are equal to one, ∑j=1

n
wij=1∀ i=1,…, n. (c) |ρ|b1.

Assumption 2. The innovations ɛ1,…, ɛn are independently and
identically distributed with zero mean and variance σ2, where the
variance is bounded by some positive constant b, 0bσ 2bbb∞.
Additionally, E(ɛi4)b∞∀ ia1,…, n.

Assumption 3. The elements of X are nonstochastic and bounded in
absolute value by some 0bcXb∞. Further, X has full column rank, and
the matrix QX = limn→∞

1
nX

′X is finite and nonsingular.

Assumption 1 ensures that thematrix I−ρW is nonsingular so that
we have u=(I−ρW)−1ɛ and

Cov uð Þ = σ2 I−ρWð Þ−1 I−ρW′
� �−1

: ð3Þ

Since u is not observable, estimation of ρ and σ2 must rely on û, the
vector of regression residuals. For the case of OLS-regression, û is given
byû=y−Xβ̂=Mu, whereM= I−X(X′ X)−1X′, and β̂=(X′ X)−1 X′ y is
the OLS-estimator of β.

In this situation, Kelejian and Prucha (1999) suggest a GMM esti-
mator for ρ and σ2 that uses three moments of ɛ, namely
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With the help of Eq. (2), the sample counterpart of Eq. (4) can be
written as
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;
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n
û′W′W′WWû
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The nonlinear least squares estimator of Kelejian and Prucha
(1999) for ρ and σ2 is defined as

ρ̂KP; σ̂
2
KP

� �
= argmin v ρ;σ 2

� �
′v ρ;σ 2
� �

: ρ∈ −a; a½ �;σ 2∈ 0; b½ �
n o

; ð5Þ

where a≥1 and bb∞.
Our version proceeds as follows: If the unobservable disturbances

u have to be replaced by the regression residuals û, why not calculate

the moment conditions (4) also in terms of ε̂=Mε=Mu−ρMWu
instead of ɛ? Therefore, we suggest an estimator that is based on the
moments of Mɛ corresponding to Eq. (4):
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wherewe use the fact thatM is an orthogonal projector. If wemultiply
Eq. (2) by M and WM, respectively, we get

Mε = Mu−ρMWu; ð9Þ

WMε = WMu−ρWMWu: ð10Þ

Plugging Eqs. (9) and (10) into themoment conditions (6)–(8)yields
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Finally, for every (n×n)-matrix A, the theoretical moments E (u′
Au) are replaced by their sample counterparts û′ Aû. SinceMu=û and
tr Mð Þ = n−k

n
, the sample counterpart to Eqs. (6)–(8) can be written as
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MWû −1
n
û′W′MWMWû
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and h=g. Our nonlinear least squares estimator for ρ and σ2 is
defined as

ρ̂RB; σ̂
2
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where a≥1 and bb∞.
The following theorem states the asymptotic equivalence of

ρ̂KP; σ̂
2
KP

� �
and ρ̂RB; σ̂

2
RB

� �
.

Theorem 1. Under Assumptions 1–3, for n→∞

ρ̂RB; σ̂
2
RB

� �
− ρ̂KP; σ̂

2
KP

� �
→
P
0:

Proof. Because of Assumption 3, for large n the elements of X (X′ X)−1

X′ are bounded by the corresponding elements of kc2X
n
Q−1
X →

n→∞
0 so

that M = I−X X′X
� �−1X′→n→∞ I and thus H→P G as n→∞. Since
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