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In regression analysis, classical estimations may be excessively influenced by a few atypical observations. We
propose a Hausman-type test to balance robustness and efficiency and to check whether a robust method
should be implemented. An economic application is presented.
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1. Introduction

In applied research, it is well known that if even a small amount of
data behaves differently from the vast majority of the observations,
classical estimations may be distorted, leading to results that are not
representative of the population. To cope with this, several robust
procedures have been proposed (see Maronna et al., 2006, for a
thorough review). However, the price to pay for robustness is a loss in
efficiency. It is thus not always preferable to call on robust estimators,
especially if the contamination is not too severe. The goal of this paper
is to provide a simple test to balance robustness and efficiency and
determinewhether a classical or a robust estimation procedure should
be preferred. The test is basically an extension of the well known
Hausman test in the context of outlier detection.

The paper is divided into five sections. After this short introduc-
tion, in Section 2 we explain the logic behind the test and in Section 3
we carry out some simulations to check its power. In Section 4 we
present a simple empirical application and in Section 5, we conclude.

2. A Hausman-type test

Assume we want to estimate a regression model of the type

yi = Xiθ + ei for i = 1; N ;n ð1Þ

where n is the sample size, X the matrix of the explanatory variables, y
the dependent variable, θ the vector of regression parameters and εi
the error term. Errors are assumed independent of the explanatory
variables and i.i.d. according to the normal distribution N(0,σ2).
Vector θ is generally estimated by ordinary least-squares (LS), the
objective of which is to minimize the sum of the squared residuals.
More precisely:

θ̂LS = arg min
θˆ

Xn
i=1

r2i where ri = yi − Xi θ̂ ð2Þ

Given that the square function awards excessive weight to large
residuals, LS is extremely sensitive to extreme values and might lead
to poor estimations if outliers are present in the dataset. To cope with
this, several alternative methods have been proposed. We chose to
focus on S-estimators here because of their strong robustness (largely
described in the statistical literature) and good asymptotic properties.

The intuition behind this method is simple: the objective of LS is to
minimize the variance of the residuals. However, since the variance is
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not a robust estimator of spread, LS breaks down in the presence of
outliers. The idea behind S-estimators is tominimize another measure
of the dispersion of the residuals, less sensitive to extreme values.
More precisely, S-estimators of regression are defined by

θ̂S = arg min
θ̂

s r1 θ̂
� �

; N ;rn θ̂
� �� �

ð3Þ

where s is a robust measure of dispersion. The robust spread is gen-
erally estimated by an M-estimator of scale which can be seen as
a robustified version of the variance. Indeed,1 the variance of residuals
is defined as σ̂

2
= 1

n

Pn
i = 1 r

2
i θð Þ which can be rewritten as 1

n

Pn
i = 1

ri θð Þ
σ̂

� �2
= 1. LS thus aims at finding the minimum value of σ̂ that

satisfies the latter equation. Again, the square may distort things as it
awards considerable importance to large residuals. To increase robust-
ness, the square function could be replaced by some other function ρ
that awards less importance to large residuals.2 The estimation problem
then consists in finding the smallest σ̂ (that we call σ̂ S to avoid any

confusion) that satisfies 1
n

Pn
i = 1 ρ

ri
σ̂

S

� �
= 1. Obviously, if the data are

Gaussian, this estimator should coincide with the standard deviation. A
correction factor b is thus needed to guarantee this consistency. The
problem now boils down to finding the minimal σ̂ S that satisfies

1
n

Xn
i=1

ρ
ri θð Þ
σ̂ S

� �
= b ð4Þ

where b is set at EΦ[ρ] (where Φ is the standard Normal cumulative
function).

In this paper, the ρ function considered is Tukey's Biweight

ρ rð Þ =
1

6c4
r6 − 1

2c2
r4 +

1
2
r2 if jr j V c

c2

6
if jr j N c

8>>><
>>>:

ð5Þ

where the tuning parameter c is set at 1.547 in order to ensure
resistance to a contamination of up to 50% of the observations (it is
then said to have a breakdown point of 50%). The price to pay for such
high resistance to outliers is very low Gaussian efficiency (28.7%).

To summarize, the LS-estimator is efficient but not robust while
the S-estimator is very robust but inefficient.

An interesting question is then how to decide in each situation
which method is preferable. A Hausman-type test may be helpful in
this context. Indeed, assuming that Gauss–Markov hypotheses are
respected, it will allow to test if the gain in consistency is not damp-
ened by an excessive loss in efficiency.

The original Hausman test (1978) is based on comparing an esti-
mator which is efficient under H0 but inconsistent under H1, with an
estimator that is consistent both under H0 and H1, but inefficient.
Even though the problem is not the same here, we retain the same
underlying logic since we compare the classical LS-estimator (θ ̂LS)
which is consistent and efficient under the null of no inconsistency
due to outliers (but inconsistent under the alternative) to the S-
estimator (θ ̂S) which is consistent under both H0 and H1, but
inefficient.

The probability limit of the difference between the two estimators
(defined as q ̂) is zero if and only if no outlier is present. As far as the
variance of q ̂ is concerned, Hausman (1978) proved that when two

estimators (one which is consistent but inefficient, the other efficient
but not necessarily consistent) are correlated, the asymptotic variance
of their difference is given by the difference of their respective
variances.

Since it is well known that (under H0)

θ̂LS
a
˜N θ;σ 2 XVXð Þ−1
� �

ð6Þ

and since Rousseeuw and Yohai (1984) proved that

θ̂
a

S˜N θ;
σ2 XVXð Þ−1

e

 !
ð7Þ

where e is the efficiency of the S-estimator, the asymptotic variance
of q ̂, denoted by V(q̂), can be written as

V q̂
� �

= V θ̂S
� �

− V θ̂LS
� �

=
σ 2 XVXð Þ−1

e
− σ 2 XVXð Þ−1

: ð8Þ

The nuisance parameter σ is not known. We therefore estimate it
with σ̂ S (estimated on robust residuals). In this way, we obtain a
consistent estimator of V(q ̂) that we call V ̂ (q̂).

The Hausman test statistic is now obtained by

H = q̂V V̂ q̂
� �h i−1

q̂ ð9Þ

Hausman (1978) shows that under the null, H is asymptotically
distributed as a central χp

2 where p is the number of unknown
regression parameters.3 If the latter statistic is higher than the tabu-
lated value of a χp

2 at a given level of confidence, we reject the hypo-
thesis that the difference between the estimators is not systematic
and thus reject the LS estimator. Otherwise, we conclude that the
efficiency loss resulting from the use of the S-estimator is more costly
than the bias produced by the use of LS and retain the latter. We
implemented this test in Stata, R and Matlab. It is available from the
authors upon request.

3. Simulations

This section studies the behavior of the test under contamination
(H1). In linear regressions, outliers are classified into three categories:
bad leverage points, good leverage points and vertical outliers (see Fig. 1
(a)). We study the power of the test under these three types of
contamination. Note that, in the context of a least-squares regression,
bad leverage points influence the estimation of all coefficients heavily,
vertical outliers have a significant influence on the estimation of the
intercept but their effect on slope coefficients is rather mild and the
effect of good leverage points is marginal on all coefficients (some
authors even state that they tend to stabilize the regression
hyperplane).

For the simulations, observations were generated according to the
model

yi = θ0 + xi + ei ð10Þ

where x~N(0,1), ε~N(0,1) and θ0=1. The chosen sample sizes are
n=100, 200, 500 and 700. For all simulations under the alternative,
we introduce a very small percentage of contamination, 1%. If the

1 Under Gauss–Markov assumptions.
2 ρ must be even, non decreasing for positive values, less increasing than the square

with a unique minimum at zero.

3 Simulations tend to show that this asymptotic result works reasonably well for
relatively small sample sizes of the order of n=200.
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