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The puzzling Monte Carlo finding that the size distortion of meta-analytic panel unit root tests increases with
the number of panel series is explained as the cumulative effect of arbitrarily small size distortions in the
time series tests composing the panel test.
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1. Introduction

Meta-analysis (see Hedges and Olkin, 1985) is a useful tool to
efficiently combine related information. In recent years, the meta-
analytic testing approach has been fruitfully applied to nonstationary
panels: Consider the testing problem on the panel as consisting of N
testing problems for each unit of the panel. That is, conduct N separate
time series tests and obtain the corresponding p-values of the test
statistics. Then, combine the p-values of the N tests into a single panel
test statistic. Among others, Maddala and Wu (1999), Choi (2001) and
Phillips and Sul (2003) propose meta-analytic panel unit root and
cointegration tests. The tests are intuitive, relatively easy to compute
and allow for a considerable amount of heterogeneity in the panel.

Via Monte Carlo experiments, the above-cited authors show that
their meta-analytic tests can be substantially more powerful than
separate time series tests on each unit. Disturbingly, however, Choi
(2001) and Hlouskova andWagner (2006), inter alia, find the Error-in-
Rejection Probability (ERP) (or, synonymously, size distortion) to be
increasing in N. That is, the (absolute) difference between the
estimated rejection probability R(α, N) and the nominal significance
level α, ERPN (α):= |R(α, N)−α|, gets larger with N. A priori, this
finding is counterintuitive, since more information should improve
the performance of the panel tests.

We argue that this behavior may be explained as the cumulative
effect of arbitrarily small ERPs in the underlying time series test
statistics composing the panel test statistics. Under a simple H0,

assuming continuous distribution functions of the test statistics,
p-values of test statistics should be distributed uniformly on the unit
interval, denoted U[0, 1]. The analytical and simulation evidence
reported in the following sections corroborate our conjecture.

2. The p-value combination test

We briefly review the p-value combination test whose ERP is
investigated subsequently. We discuss the example of a panel unit root
test. Denote by pi the marginal significance level, or p-value, of a time
series unit root test applied to the ith unit of the panel. Let θi,Ti be a unit
root test statistic on unit i for a sample size of Ti. Let FTi denote the null
distribution function of the test statistic θi,Ti. Since the tests considered
here are one-sided,pi=FTi (θi,Ti) if the test rejects for small values of θi,Ti and
pi=1−FTi (θi,Ti) if the test rejects for large values of θi,Ti. We only consider
time series tests with the null of a unit root. We test the following null:

H0 : The time series i is unit�root nonstationary iaℕNð Þ;
ð1Þ

against the alternative

H1: For at least one i, the time series is stationary.

((i∈ℕN) is shorthand for i=1,… ,N.) TheNp-values of the individual
time series tests, pi (i ∈ ℕN), are combined as follows to obtain a test
statistic for panel (non-) stationarity:

Pv2 ¼ �2
XN
i¼1

lnpi ð2Þ

The Pv2 test conveniently imposes minimal homogeneity restric-
tions on the panel. For instance, the panel can be unbalanced. In
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keeping with most early applications in the literature, we assume
independence across i.

Assumption 1 (Cross-sectional independence). For i≠ j, i, j=1,… , N,
the p-value pi is independent of pj.

The following lemma recalls the asymptotic distribution of the
test.

Lemma 1. (Distribution of the Pv2 test).

Under the null of panel nonstationarity, Assumption 1 and assuming
continuous distribution functions of the θi,Ti, the Pv2 test is, as mini

Ti→∞ (i∈ℕN), asymptotically distributed as

Pv2Ydv
2
2N

Proof. The proof is an application of the transformation theorem for
absolutely continuous random variables (r.v.s). Under H0 and as mini

Ti→∞ (i∈ℕN), pi~U[0, 1]. Let y=g(pi):=−2 ln pi. Then, pi ¼ g�1 yð Þ ¼
e�

1
2y and

f�2 lnpi yð Þ ¼ fpi g�1 yð Þ� �jg�1V yð Þj:

Hence, jg�1V yð Þj ¼ 1
2 e

�1
2y. We have fpi

(g−1(y))=1 ∀ g−1(y)∈ [0, 1].
This implies f�2 lnpi yð Þ ¼ 1

2 e
�1

2y: The density of a v22 r.v. is fv2
2
yð Þ ¼

1
2C 1ð Þ e

�y
2: Recall that Γ(1)=1. So, fv22 yð Þ ¼ 1

2 e
�y

2:

We have shown that f�2 lnpi yð Þ ¼ fv2
2
yð Þ. The proof is complete

because the sum of N independent χR
2 r.v.s is distributed as

χNR
2 . □
The maintained assumption of cross-sectional independence is, of

course, restrictive in most applications. However, we anticipate that
the size distortions to be derived belowwould, if anything, be higher if
cross-sectional dependence were additionally present (see, e.g.,
Hlouskova andWagner, 2006). Our results should therefore be viewed
as conservative. We further see from the proof that the test has awell-
defined asymptotic distribution (for mini Ti→∞) for finite N. This is
attractive because in many applications, the assumption that N→∞
may not be a natural one.

3. The Error-in-Rejection Probability of the combination test

As should be clear from the previous discussion, any unit root test
for which p-values are available can be used to compute the Pv2 test
statistic. The Dickey and Fuller (1979) test is a popular choice. It is
well-known that the (first-order) asymptotic approximation F to the
exact finite Ti null distribution of the test statistics, FTi, need not be
accurate. This is because the null hypothesis (1) is not a simple one
(and the available test statistics are not pivotal). H0 is satisfied by all
unit root nonstationary processes

yi;t ¼ yi;t�1 þ ui;t iaℕNð Þ

where the errors ui,t can be from a wide class of dependent and
heterogeneous sequences. See, for instance, the fairly general mix-
ing conditions on ui,t of Phillips (1987). Hence, the p-values of the
test need no longer be uniformly distributed on the unit interval,
even if the true Data Generating Process (DGP) of the time series is
from the null hypothesis set of unit root nonstationary processes.
Thus, the assumptions required for validity of Lemma 1 need no
longer be met.

As we argue in this section, this fact can explain the counterintuitive
finding of a deteriorating performance of the Pv2 test with increasing N.
Table 1 summarizes selected Monte Carlo results on the ERP of the Pv2

test reported in the literature. All find ERPN (α)=|R(α, N)−α| to increase
with N.

We propose the following modeling assumption to investigate this
behavior.

Assumption 2 (Generalized p-value distribution). For finite Ti, the
p-values are distributed as p̃i e U a; b½ �, where az0, bV1 and abb,
(i∈ℕN).

Since the exact distribution of the test statistics is generally
unknown, so is the exact p-values' distribution. The assumption is,
however, convenient for modeling purposes. First, letting a→0 and
b→1, it comprises the asymptotic result as a limiting case. Second,
it is easy to characterize the ERP of a single time series test in terms
of a and b. More precisely, since a rejection at level α is equivalent to a
p-value pbα,

PðFp̃ibaÞ ¼ R a; 1ð Þ ¼
0 for a N a

a� a
b� a

for a b a and b N a

1 for b b a

8><
>:

In particular, it is possible to model “oversized” unit root tests by
taking p̃i e U 0; b½ �, where bb1. Intuitively, we remove the p-values
corresponding to the test statistics speaking most strongly in favor of
H0. Conversely, p̃i e U a; 1½ �, aN0 represents an “undersized” test. The
following lemma derives the density function of �2 lnp̃i.

Lemma 2. (Distribution of �2 ln p̃i).

Under p̃i e U a; b½ �, the density of �2 ln p̃i is given by

f�2ln p̃i yð Þ ¼
0 for ya �l;�2 ln bð Þ

1

2 b� að Þ e
�y

2 for ya �2 lnb;�2 ln a½ �
0 for ya �2 ln a;lð Þ;

8><
>:

taking � ln a=∞ for a=0.

Proof. Again, we can apply the r.v. transformation theorem. Using the
notation from Lemma 1, we still have p̃i ¼ g�1 yð Þ ¼ e�

1
2y and hence

jg�1V yð Þj ¼ 1
2 e

�y
2. fp̃i follows immediately from Assumption 2 as

fp̃i g
�1 yð Þð Þ ¼ 1

b�a for g−1(y) ∈ [a, b] and 0 otherwise. The support
of the r.v. �2 lnp̃i follows from solving g−1 for the lower and
upper bounds of p̃i. One verifies directly that f�2 ln p̃i yð Þ satisfiesR
ℝ f�2 ln p̃i ỹð Þdỹ ¼ 1. □

f�2 ln p̃i yð Þ contains the density of the χ2
2 distribution as a special

case with a=0 and b=1.
We now study the ERP of the Pv2 test for the case N=1, denoted

ERP1(α). Let cα2
be the critical value of the χ2

2-distribution at nominal
level α, i.e.

R ca2
0

1
2 e

�1
2 ỹ dỹ ¼ 1� a ⇒ ca2 ¼ �2 ln a: Then,

R a; 1ð Þ ¼ 1� R�2 ln a
�l f�2 ln p̃i ỹð Þdỹ ¼ a

b

As an example, consider the “oversized” case, p̃i e U 0; 0:9½ �, and
α=0.05. Then, ERP1 0:05ð Þ ¼ j 0:05 1�0:9ð Þ

0:9 jc0:005, yielding an ERP which
would be considered small in most Monte Carlo analyses.

Table 1
Simulated Type I error rates for the Pv2 test

N 5 10 25 30 50 60 100

Maddala and Wu (1999) .044 .107 .131
Choi (2001) .050 .070 .090 .090 .130
Hanck (2007) .035 .031 .021 .014
Hlouskova and Wagner (2006) .090 .110 .120 .145
Choi (2006) .051 .042 .037

Note: All results are for the nominal 5% level.
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