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example confirms that the cost function is recovered using the estimated profit function.
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1. Introduction

Economies of scope (EOS) measure the percentage of cost savings of
producing several products in a single firm compared to producing the
same products separately. The sources of economies of scope lie in the
complimentary property among inputs. Since Baumol et al. (1982),
economies of scope have become an important concept for measuring
cost savings for multiproduct firms. The common approach involves
estimating a cost function, and comparing the cost of producing multi-
products jointly with the cost of producing all the products individually.

The normalized quadratic functional form is often used in the study
of economies of scope (Featherstone and Moss, 1994; Fernandez-
Cornejo et al., 1992; Jin et al., 2005; and Cohn et al., 1989). One of the
disadvantages of the parametric approach is that the data used to
estimate cost functions are not always on the efficient frontier. Because
scope economies are defined only on the efficiency frontier, testing
economies of scope using data off the frontier could confound scope
economies with X-efficiencies (Berger et al., 1993b). In addition, im-
posing curvature in a profit function is easier than in a cost function.
Normally, concavity in outputs and convexity in inputs are imposed for

two sub-matrices of the Hessian matrix, and off diagonal sub-matrices
are not considered. Using the profit function makes it easier to impose
curvature on the off diagonal sub-matrices (Marsh and Featherstone,
2004). Berger et al. (1993a) also argue that measuring scope economies
from a cost function doesn't consider whether the output bundle is
optimal. Therefore, they suggest that more research should concentrate
on estimating economies of scope from the profit function, which
includes both the revenue and cost sides of production. Berger et al.
(1993a) provided a new concept of optimal scope economies, which
determines “whether a firm facing a given set of prices and other
exogenous factors should optimally produce the entire array of products
or specialize in some of them”. Using an unrestricted profit function, the
optimal quantities of outputs can be derived using Hotelling's lemma. If
the optimal quantities of outputs are determined to be positive at given
exogenous prices, optimal scope economies exist at that point.

Following Berger et al.'s suggestion, we provide a way to estimate
economies of scope using the profit function. Different from Berger
et al.'s (1993a) approach, we use the classic concept of scope econo-
mies that was first provided by Baumol et al. (1982).

2. Duality and recovering cost function from unrestricted profit
function

To determine economies of scope (EOS), the cost of producing
multiproducts jointly and the sum of the cost to produce these
products individually are compared. Economics of scope measure the
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savings that occur if the products are produced jointly rather than
separately. Specifically, EOS is:

EOS ¼

X
i

C Yið Þ � C Yð Þ

C Yð Þ ;

where C(Yi) is the cost of producing only Yi in a separate firm, and C(Y)
is the cost of producing all outputs by a singlemultiproduct firm. If EOS
is positive, economies of scope exist and firms are more cost efficient
by diversifying production.

Duality theory indicates that a profit maximizing firm also mini-
mizes cost, and the unrestricted profit function contains the same
economic information as the indirect cost function (Mas-Colell et al.,
1995). Theoretically, it's possible to link the parameters of the profit
function to the parameters in the cost function. Lau (1976) provides
Hessian identities where under perfect competition, a restricted profit
(cost) function or production function can be recovered from an un-
restricted profit function and vice versa. Lusk et al. (2002) examined
the relationship between the parameters of production function,
unrestricted profit function and restricted profit function empirically.
The Hessian identities provide a relationship to determine the
quadratic effects but do not provide a mechanism for determining
the intercept and the linear terms that are needed to estimate econo-
mies of scope from the profit function. We use the normalized qua-
dratic functional form to determine that relationship. Starting with a
cost function, we use the maximization process to calculate the
unrestricted profit function. If the parameters of profit function can be
expressed using the parameters of the cost function, an inverse rela-
tionship can be obtained, which expresses the parameters of the cost
function using the parameters from the profit function.

3. Theoretical relationship between cost and unrestricted profit
functions

Suppose that we have a normalized quadratic indirect cost func-
tion C(W,Y) that is continuous in (W,Y) and differentiable in W and Y,
linear homogenous and concave inW, and convex in Y. The normalized
cost function with n+1 inputs and m outputs is expressed as:

C W;Yð Þ ¼ b0 þ B
1Tn

TW
nT1

þ A
1Tm

T Y
mT1

þ0:5TW V
1Tn

TBB
nTn

TW
nT1

þ 0:5T Y V
1Tm

T CC
mTm

T Y
mT1

þW V
1Tn

T AA
n4m

4 Y
mT1

;

ð1Þ

where C(W,Y) is the normalized cost,W is a vector of input normalized
prices and Y is the measure of output. The cost and input prices are
normalized by the n+1 input price which imposes the homogeneity
condition. Formally,

B ¼ b1b2 N N bn½ �

W ¼ w1w2 N N wn½ �

A ¼ a1a2 N N am½ �

Y ¼ y1y2 N N yn½ �

BB ¼

b11 b12 N N b1n
b21 b22 N N b2n
:
:
:

:
:
:

:
:
:

:
:
:

bn1 bn2 N N bnn

2
666664

3
777775
where bij ¼ bji to satisfy symmetry

CC ¼

c11 c12 N N c1m
c21 c22 N N c2m
:
:
:

:
:
:

:
:
:

:
:
:

cm1 cn2 N N cmm

2
666664

3
777775
wherecij ¼ cji to satisfy symmetry; and

AA ¼

a11 a12 N N a1m
a21 a22 N N a2m
:
:
:

:
:
:

:
:
:

:
:
:

an1 an2 N N anm

2
666664

3
777775
:

The Hessian matrix of the normalized quadratic cost function for
input prices and output quantities are BB and CC respectively. The
curvature and symmetry conditions together imply that BB and CC are
negative semi-definite symmetric matrices and positive semi-definite
symmetric matrices, respectively.

Assume both input and output markets are perfectly competitive,
the unrestricted profit function can be obtained as a result of following
maximization problem:

P ¼ max PTY � C W;Yð Þ: ð2Þ
where P is a vector of exogenous output prices, P=[p1 p2 …… pm]. The
first order conditions allow us to determine the optimal output AP

AY ¼
P V� AC W;Yð Þ

AY ¼ 0 by solving a set of equations. For the normalized
quadratic cost function (1), the first order conditions are:

P V¼ A Vþ CCTY þ AA VTW; ð3Þ
and the optimal output quantities are determined by solving for Y are:

Y4 ¼ CC�1T P V� A V� AA VTWð Þ: ð4Þ

Plugging Y⁎ into the original cost function (1) to solve for the cost
at the optimal output quantities:

C W;YTð Þ ¼ b0 þ B
1Tn

TW
nT1

þ A
1Tm

TCC�1T P V� A V� AA VTWð Þ
mT1

þ 0:5TW V
1Tn

TBB
nTn

TW
nT1

þ 0:54 CC�1T P V� A V� AA VTWð Þ� �
1Tm

V
T CC
mTm

T CC�1T P V� A V� AA VTWð Þ
mT1

� �

þW V
1Tn

TAA
nTm

TCC�1T P V� A V� AA VTWð Þ
mT1

:

ð5Þ

Expanding via multiplication results in:

C W ;Y4ð Þ

¼ b0 þ BTW þ ATCC�1TP V� ATCC�1TA V� A4CC�1TAA VTW
� �

þ0:5TW VTBBTW þ 0:5T P V� A V� AA VTWð Þ VT CC�1� � Vh i
T P V� A V� AA VTWð Þ

þ W VTAATCC�1TP V�W VTAATCC�1TA V�W VTAATCC�1TAA VTW
� �

:

ð6Þ

Because CC and BB are symmetric matrices, (CC−1)′ is equal to CC−1

and (BB)′ is equal to BB. Further expanding Eq. (6), the cost function is:

C W;YTð Þ ¼ b0 � ATCC�1TA Vþ 0:5TATCC�1TA V

þBTW � ATCC�1TAA VTW þ 0:5TW VTAATCC�1TA V

þ 0:5TATCC�1TAA VTW �W VTAATCC�1TA Vþ ATCC�1TP V

� 0:5TATCC�1TP V� 0:5TPTCC�1TA Vþ 0:5TW VTBBTW

þ 0:5TW VTAATCC�1TAA VTW �W VTAATCC�1TAA VTW

þ 0:5TPTCC�1TP V� 0:5TW VTAATCC�1TP V

� 0:5TPTCC�1TAA VTW þW VTAATCC�1TP V:

ð7Þ

Each term in Eq. (7) is a scalar, thus we can simplify the above
equation to:

C W; YTð Þ ¼ b0 � 0:5TATCC�1TA Vþ B� ATCC�1TAA V
� �

TW
þ 0:5TW VT BB� AATCC�1TAA V

� �
TW

þ 0:5TPTCC�1TP V: ð8Þ
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