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As a result of multiple land use types, spatial heterogeneity, and conflicts of interest amongmultiple participants,
multi-site land use allocation becomes a complex and significant optimization issue. We propose an improved
Genetic Algorithm (GA) to deal with multi-site land use allocation, in which maximum economic benefit, max-
imum ecological benefit, maximum suitability, and maximum compactness were formulated as optimal objec-
tives; and residential space demand and some regulatory knowledge were set as constraints. A Goal
Programming model with a reference point form was used to manage trade-offs among multiple objectives. In
order to improve the efficiency of the common GA applied to multi-site land use allocation, two crossover
steps and two mutation operations were designed. This paper presents an application of the improved GA to
the Regional District of Central Okanagan in Canada. Results showed that the proposedGAexhibited good robust-
ness and could generate any optimal land use scenario according to stakeholders' preferred objectives, thus hav-
ing the potential to provide interactive technical support for land use planning.
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1. Introduction

Land use planning with the multiple macro-scale objectives of eco-
nomic development, improvement of human well-being, and environ-
mental conservation is an important policy instrument to achieve
sustainable development goals. Generally, land use planningmay be di-
vided into two associated parts, of which the first is to generate alterna-
tive land use scenarios and the second is to assimilate public feedback
and decide on a final land use allocation scheme. The core concrete
work of land use planning is the first part, which is to allocate land
use types to different spatial units having characteristics related to
their geographical locations, with the purpose of seeking the best land
use layout. Land resource allocation is thus a spatial optimization prob-
lem, where the planner tries to reconcile multiple conflicting interests
as rationally and transparently as possible by manipulating the quanti-
ties and locations of land uses (Carsjens & van der Knaap, 2002).

In this paper, we dealwithmulti-site land use allocation (MLUA), re-
ferring to the problem of allocating more than one land use type to dif-
ferent spatial units, which is challenging as it not only deals with trade-
offs amongmultiple objectives but must also conciliate the competition
of different land uses for the same spatial unit (Aerts et al., 2003).When
allocation decisions are made, there may be conflicting responses from
multiple stakeholders, who have different land-use preferences for a

limited land resource (Berke & Kaiser, 2006; Bojórquez-Tapia et al.,
1994). Every spatial unit has a different fitness for a given land use
type, meaning that some spatial units may be more appropriate for a
particular land use because of site characteristics or other factors. Ideal-
ly, to maximize societal, economic, and ecological benefits, all of these
factors should be taken into account (Eastman, Jin, & Kyem, 1995). Fur-
thermore, the problem exhibits spatial dependency, and an additional
planning objective may be to keep land use types connected, contigu-
ous, or compact (Stewart, Janssen, & van Herwijnen, 2004). The reason
for this is that the way a spatial unit is used has an effect on the future
attributes of its neighbouring units, e.g., if a parcel is planned as a resi-
dence, its neighbours may be designated as commercial, residential,
park, or transportation land use types, aiming to reduce the arrange-
ment cost of public facilities and to improve community accessibility.
Dealing with these spatial considerations, along with other economic
and social constraints, to ensure that a community develops in a way
that promotes well being, reduces transportation costs, and maintains
ecosystem services is one of the key challenges faced by urban land
use planners.

Land use change, however, is one of the single most important
human drivers of environmental degradation on local, regional, and
global scales (Foley et al., 2005). Appropriate and efficient land use plan-
ning is therefore one of the key ways to achieve sustainable develop-
ment. There is an urgent need for effective tools to assist planners in
determining the optimal allocation of future land use, taking into con-
sideration various spatial and geographical constraints as well as com-
munity development goals. Computational approaches to land use
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allocation can help to resolve this problem, by generating a range of pos-
sible solutions that meet defined constraints and objectives.

Various tools and methods have been developed to resolve land use
allocation. Some attention has been paid to optimization of land use
structure, i.e., just optimizing the allocation of land use quantity; how-
ever the hypothesis of these approaches is that all cells are homoge-
neous across space, which is obviously not the case in a real situation
(Liang & Yanfang, 2002; Sadeghi, Jalili, & Nikkami, 2009). For spatial op-
timization, a hierarchical optimizationmethod forMLUAwas presented
in early works (Campbell et al., 1992; Carver, 1991), however it only
considered the criterion of site suitability and neglected spatial target
demands. As well, the efficiency and effectiveness of this approach is
not ideal. Later, linear programming (LP) was applied to find solutions
for MLUA (Cocks & Baird, 1989; Ligmann-Zielinska, Church, &
Jankowski, 2008;Meyer, Lescot, & Laplana, 2009), but there are two dis-
tinct limitations to this approach: one is that it can't completely take
into account spatial objectives whose values vary nonlinearly with
cells' attribute values; the other is its helplessness in handling regions
with more than 50 × 50 cells because of numerous variables and con-
straints (Aerts et al., 2003). Recently, more attention has been paid to
applying heuristic algorithms to resolve land use allocation issues. East-
man, for example, proposed an Iterative Relaxation (IR) approach
(Eastman, Jin, & Kyem, 1995), but it is unlikely to generate good solu-
tions when spatial characteristics are of great importance (Brookes,
1997b). Brookes put forward a heuristics with a Genetic Algorithm
(GA) for single site allocation and multi-patch design. However, the
heuristic algorithm neglected competition of land uses for spatial loca-
tions, and requiring cells of the same land use to be contiguous may
be a limitation of this approach (Brookes, 1997a, 2001). Matthews ex-
plored two chromosome representations of GA for rural spatial land
use allocation and identified the strengths and weaknesses of each rep-
resentation (Matthews, 2001).

On thewhole, fourmain heuristics have been used to find optimized
alternatives for MLUA. The most widely used is GA, which is a type of
heuristic algorithm based on the mechanics of natural selection to
search for a global optimum. GA has been proven effective in MLUA
problems (Cao et al., 2012; Day et al., 1999; Feng & Lin, 1999; Liu, He
et al., 2014; Liu et al., 2015), especially in large and complex search
spaces (Goldberg, 1989). The second is the SimulatedAnnealing (SA) al-
gorithm, which was first applied to solve MLUA by Aerts & Heuvelink
(2002), and has been compared with other spatial allocation methods
on effectiveness (Aerts et al., 2005; Santé-Riveira et al., 2008). In addi-
tion, a knowledge-informed Pareto SA was developed specifically to
tackle multi-objective allocation problems by Duh & Brown (2007).
The third heuristic is Particle Swarm Optimization (PSO), which was
successfully used forMLUAby Liu (Liu, Liu et al., 2012), and subsequent-
ly a hybrid PSOwas used to improve the convergence speed by Liu (Liu,
Ou et al., 2013). The fourth is the Ant Colony Optimization (ACO)meth-
od, which involves seeking optimized alternatives by imitating ant col-
onies' food-search behaviour. ACOwas improved to conduct MLUA and
it has been demonstrated that its efficiency and effectiveness are both
better than GA and SA (Li, He, & Liu, 2009; Liu, Li et al., 2012; Liu, Tang
et al., 2014).

Each of the methods described above has limitations that restrict its
ability to effectively solve MLUA problems. Although SA uses a temper-
ature parameter to control the acceptance probability of solutions, thus
avoiding local optimization traps, it was verified as having no advantage
over GA approach by Aerts et al. (2005), and Liu, Li et al. (2012).We also
compared the efficiency of SA and GA on the MLUA issue, the results of
which are included as a supplement to thismanuscript. The PSOmethod
includes the general PSO and hybrid PSO. The general PSOmay be unre-
alistic for MLUA problems due to the unsolved location renewal mech-
anism for multiple dimensions of particles (Ma, He, & Yu, 2010); and
the hybrid PSO is in essence the same as GA, having crossover and mu-
tation as evolutionary operations; the dimension of particles represents
area proportions of landscapes, requiring that there be constant land

use proportions set as constraints prior to spatial allocation (Liu, Ou et
al., 2013). For ACO used to solve MLUA, ant type is determined by land
use type, and every cell is an ant; the essence of ACO is to modify the
conversion probability of cellswith a feedback value of optimized objec-
tive from the previous loop, which in fact is an evolutionary operation to
improve alternative performance. This method was shown to be a little
more efficient than GA for MLUA (Liu, Li et al., 2012), however it prob-
ably cannot be used for typical, multi-objective optimization since it is
not clear which objective's value should be selected as feedback to ad-
just the cell conversion probability in an evolutionary process, andmul-
tiple objectives are always in contradiction to each other. As awhole, GA
forMLUA has two advantages: the first is that solutions are searched for
via an evolutionary process, not completely depending on iterative se-
lection, and thus providing a very efficient method of convergence to-
wards the ideal solution. The second is that it can generate a non-
dominated set for further analysis to reveal optimal solutions for a
range of cases. For these reasons, we chose to use GA applied for
MLUA in our study.

In addition to searching for optimal alternatives, another crucial as-
pect of MLUA is the technique used for multi-criteria decision making.
Three approaches are commonly used. The first is the simple weight
sum method, where each normalization objective value is given a
weight, and then theweights are accumulated as a final pursuant objec-
tive (Aerts et al., 2003). The second is to seek the non-dominated set as
an acceptable alternative, using the principle of the Pareto Optimum
(Xiao, Armstrong, & Bennett, 2002; Xiao, Bennett, & Armstrong, 2007).
The last is an application of Goal Programming (GP), in which a refer-
ence point is used for comparison of solutions. In this case, GP is used
to pursue the solution with a minimum distance to a reference alterna-
tive, which can be adjusted by stakeholders based on their preferences
for different objectives (Stewart, Janssen, & van Herwijnen, 2004). The
first method with linear form could lead to highly biased solutions
(Stewart, 1993, 1996), in which the comprehensive objective value
may be perfect but some sub-objective values are poorly satisfied.
Such solutions are obviously unacceptable for meeting the multi-objec-
tive (i.e., ecological, social and economic) requirements of sustainability.
The Pareto Optimum method guarantees all sub-objective values of a
selected solution are better than previous solutions, effectively averting
the biased solution circumstance. There are, however, still two limita-
tions, the first being that the increase in the number of objectives
makes it difficult, aswell asmeaningless, to search for a non-dominated
set. The other limitation is the inability to find an optimized solution
that meets stakeholders' preferences for the multiple objectives.

Lastly, the data format (grid or vector) is also an important issue for
MLUA problems. When in vector format, diverse approaches can be
used to calculate a spatial objective, both computational efficiency and
accuracy may be improved, and generally the number of spatial units
can be decreased as compared to gridded data (Stewart & Janssen,
2014). However, there is a severe drawback to using the vector data for-
mat for MLUA, which is related to the cursory resolution of the spatial
unit. For example, a large vector object that could be divided into
many cells in a grid can only have one land use when working in vector
format.Whenworking in raster format, however, this same object could
be assigned one land use for each cell. The use of vector format thus
limits the flexibility of optimized allocation results for land use plan-
ning. For this reason, although the huge number of cells reduces opera-
tion efficiency, we will conduct MLUA using grid formatted data in this
study.

Although some publications have focused on MLUA with heuristics
tools, most of these studies have neglected to include objectives in
their analysis; also government regulation on regional land use is rarely
considered, which may seriously influence the final result of MLUA. In
addition, recent heuristics applications havemainly focused on small re-
gions with no empirical studies of MLUA on relatively large regions.
Thus, there is still a great deal of development to be done before
MLUA can meet the requirements of an interactive land use planning
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