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A B S T R A C T

Accurate load forecasting plays a crucial role in the decision making process of many market participants,
but probably is most important for the dispatch planning of an electricity market operator. Despite the
competitive forecast accuracy achieved by existing point forecast models, point forecasts can only provide
limited information relating to the expected level of future load. To account for the uncertainty of future
load, and provide a more complete picture of the future load conditions for dispatch planning purposes,
quantile forecasts can be useful. This paper proposes a computationally efficient approach to forecasting
the quantiles of electricity load, which is then applied to forecasting in the National Electricity Market of
Australia. The proposed model performs competitively in comparison with one industry standard and two
recently proposed quantile forecasting methods. One of the main advantages of the proposed approach is the
ease with the number of covariates can be expanded. This is a particularly important feature in the context
of load forecasting where large numbers of important drivers are usually necessary to provide accurate load
forecasts.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Accurate load forecasting is a crucial contributor to the decision
processes of the electricity market regulator and other electricity
market participants primarily because load prediction provides an
indication of the future state of the demand side of the market. The
literature on load forecasting has concentrated mainly on producing
accurate point forecasts (Harvey and Koopman, 1993; Hippert et al.,
2001; Espinoza et al., 2005; Cancelo et al., 2008; Amaral et al., 2008;
Taylor, 2012; Clements et al., 2016). While this type of forecast does
provide valuable information, it only gives an incomplete snapshot
of the future state of the market. For example, from the perspective
of a market operator, the main goal of dispatch planning is to meet
future demand at minimum cost, while at the same time maintaining
adequate generation capacity to cover (without disruption) all possi-
ble supply-side conditions. In this context, reliance on point forecasts
is an extremely risky strategy, especially during peak periods when
load is highly volatile. To prevent possible shortages and associated
disruptions to electricity dispatch, at the very least it would be natural
to consider a number of different possible future demand scenarios.
In other words, a well-designed dispatch plan requires the regula-
tor to balance the operational cost with the security of supply. To
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achieve this balance, it is important to not only have knowledge of the
expected level of future demand as provided by a point forecast, but
also to be aware of the uncertainty or variability of future demand.

A separate strand of the load forecasting literature, attempts to
forecast the uncertainty of future load. The most straightforward
method to achieve this objective is to use simulation methods to con-
struct interval forecasts of load (Fan and Hyndman, 2012). By con-
trast, Engle et al. (1992), Hyndman and Fan (2010) and Sigauke and
Chikobvu (2011) forecast the maximum load in a day or a week. Fore-
casting maximum load provides additional information about the
upper tail behaviour of the load distribution. However, this approach
is still technically a point forecast and is produced using traditional
mean regression models. Recognising the fact that forecasting load
uncertainty is still relatively underdeveloped, this paper seeks to
broaden the menu of options available to the applied researcher or
policymaker. To this end, the idea of forecasting quantiles of future
load directly using quantile regression is explored in detail.

Although the application of quantile regression to forecasting
quantiles of various economic variables is not new, it has rarely
been applied in the context of load forecasting. Instead, quantile
forecasts of load are normally produced by means of simulation or
bootstrapping (McSharry et al., 2005; Fan and Hyndman, 2012). One
reason for the relative paucity of studies using quantile regression
is that it can be computationally expensive, even in models with a
small number of parameters. This problem is particularly acute in
the context of load forecasting where complex periodicity together
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with temperature effects and differential load patterns on holidays
and weekends means that a large number of covariates need to be
included in order to achieve satisfactory forecasting accuracy.

In order to address the computational challenge posed by the
large number of covariates in quantile forecasting models, several
remedies have been suggested. López Cabrera and Schulz (2014)
divide the quantile regression problem into multiple steps and
treat the load quantiles as a combination of many principal com-
ponents with the weights for these components being modelled
using autoregressive models. Liu et al. (2017) adopt a forecast com-
bination technique in which quantile regression is performed on
point forecasts from a number of models, instead of directly on a
large number of covariates. However, since these point forecasts
differ only because of differences in the specification of the mod-
els, the quantile forecasts only account for the uncertainty in model
specification and cannot capture the uncertainty of future load itself
conditional on all observed covariates. One of the most promis-
ing avenues of recent research uses a technique borrowed from
the machine learning literature. Taieb et al. (2016) apply a quantile
gradient boosting algorithm that allows the number of covariates
used in the load forecast to grow in an optimal manner.

This paper suggests a different solution to the parameter
estimation problem in quantile regressions with a high dimensional
covariate vector. Specifically, a Bayesian estimation approach is
proposed which a large number of covariates can be accommodated
quite easily. Two models, which differ only in the assumed form of
the underlying distribution of the disturbance terms, are specified
and compared. The first model assumes that the disturbances fol-
low an Asymmetric Laplace distribution (ALD) which is conveniently
represented as a mixture of a normal and an exponential distribu-
tion. This assumed parametric form for the disturbances makes the
model relatively easy to estimate (Kozumi and Kobayashi, 2011). The
second model treats the distribution of the disturbances in a non-
parametric way using a mixture of kernel functions, controlled by
a Dirichlet process (Kottas and Krnjajić, 2009). Forecasts for these
two models are then compared to a number of existing approaches
and also with the quantile forecasts of load reported by the Australia
Energy Market Operator (AEMO).

The results of the forecasting comparison may be summarised
succinctly as follows. The ALD model is found to perform better than
the non-parametric model and this approach is then compared to
the combination of point forecasts method suggested by Liu et al.
(2017) and the gradient boosting method of Taieb et al. (2016). The
ALD based model easily outperforms the combination of forecasts
approach but is only marginally superior to the gradient boost-
ing method. Given the large number of arbitrary tuning parameters
required to be chosen by the researcher in order to operationalise
the gradient boosting algorithm and the importance of these choices
to the performance of the algorithm, the Bayesian quantile regres-
sion model based on the ALD should be considered as an important
addition to the load forecasting arsenal.

Finally, a brief word on the form of the loss functions used in the
empirical work of the paper is in order. The loss metrics adopted
here, namely, a pinball loss function and a quantile coverage rate,
are assumed to be time independent. In other words, there are no
differential penalties on forecast errors during peak and off-peak
periods. Any time-variation in the loss function would reflect a
prior position on the forecaster’s attitude toward risk. In this sense,
the loss functions used here take an agnostic view on the decision
maker’s attitude to risk.

2. The modelling framework

To produce quantile load forecasts, quantile regression tech-
niques such as that developed by Koenker and Bassett Jr. (1978), may

be applied to the same model specification that is commonly used
for making forecasts of the conditional mean. One of the most widely
used model specifications is the autoregressive moving average
(ARMA) form. Let yit denote the load in half hour i on day t, a basic
ARMA model specification for load would then take the form

yi t = h0 i +h1 iyi t−1 +h2 iyi t−7 +h3 iy(−t) +h4 iei t−1 +h5 iei t−7 +ei t ,

(1)

in which ei t is a disturbance term and the notation y(−t) refers to
the latest observed load available at the time of making the fore-
cast. The presence of estimated lagged residuals has proved to be
particularly useful in forecasting load (Sigauke and Chikobvu, 2011;
Kim, 2013; Clements et al., 2016), since they allow the forecast to
be adjusted based on prediction errors from the previous intervals.
In the quantile regression context, the only difference is that the
residual terms are obtained conditional on quantile estimates of all
the parameters. The inclusion of the lagged residual terms can be
considered as a special case of the dynamic quantile specification of
Engle and Manganelli (2004), in which the lagged quantiles enter the
model specification.

In addition to the lag structure in Eq. (1), a good load forecasting
model should also account for other factors that may have a signifi-
cant impact on the variation of load. Paramount among these are the
seasonality of load, temperature and special day effects. Incorporat-
ing these factors in Eq. (1), the model specification used in this study
for the load in half hour i on day t is

yi t = h0 i +
7∑

p=1

h1 i pWt pyi t−1 + h2 i 0yi t−7 + h3 iy(−t) + h4 iei t−1
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+
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))
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+
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k=1
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+
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j=1

(
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)
. (2)

In this specification, the effect of lagged load is critically depen-
dent on the day of the week. Accordingly, the parameter h1 i on
lagged load is allowed to dependent on day-of-the-week dummy
variables Wt p with p = 1, . . . , 7. The variable y(−t) is context spe-
cific and is determined by the time at which the forecast is made.
Specifically it relates to the last observed load that may properly be
included in the forecasting equation. For example, if the forecast is
to be made from 04:00 hours (as is the practice of the Australian
market operator) then the observed load in the half hour immedi-
ately prior to this cut-off is available for use in forecasting for the
entire subsequent 24 hour period.

To accommodate the annual pattern of load induced by seasonal
weather changes, the parameter h2 i is specified in terms of Fourier
polynomials as

h2 i = h2 i 0 +
4∑

r=1

[
h2 i r 1 sin

(
2rp

(
t

365

))
+ h2 i r 2 cos

(
2rp

(
t

365

))]
.

Four terms in the Fourier expansion are found to be adequate to
model the annual cycle.
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