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Considering nonlinear and highly persistent dynamics of realized volatility, we introduce Markov regime
switching models to the Heterogeneous Autoregressive model of the Realized Volatility (HAR-RV) models to
forecast the realized volatility of the crude oil futures market. In-sample results demonstrate that the high vola-
tility regime is short-lived. Out-of-sample results suggest that HAR-RV models with regime switching increase
the forecasting ability significantly than those without regime switching. Moreover, these findings are robust
for different actual volatility benchmarks, forecasting windows, and model settings.
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1. Introduction

Oil is an important energy commodity that plays an essential role in
the world economy. Oil price volatility has a significantmacroeconomic
influence to the real economy (Hamilton, 1983, 2003; Kilian and Park,
2009) and financial markets (Aloui and Jammazi, 2009; Kilian and
Park, 2009). Oil price volatility is also an important issue for risk man-
agement, derivative pricing, portfolio selection, and many other finan-
cial activities. Thus, modeling and forecasting the volatility of crude oil
price is critical for researchers, market participants, and policymakers.

Modeling and predicting oil price volatility are investigated based on
the framework of the GARCH-class models (e.g., Agnolucci, 2009;
Cheong, 2009; Kang et al., 2009; Mohammadi and Su, 2010; Wei et al.,
2010; Nomikos and Pouliasis, 2011; Nomikos and Andriosopoulos,
2012; Wang and Wu, 2012; Efimova and Serletis, 2014). However,
GARCH-classmodels are constructed for daily or even a lower frequency
data, which can result in a substantial loss of intraday trading informa-
tion. Because of the availability of abundant high-frequency (intraday)

data in recent years, research on financial market volatility has taken
newavenues.Moreover, high-frequency data contains awealth of infor-
mation that can help market participants to make quicker decisions. As
a result, volatility measure based on high-frequency data has received
much attention in academia.

The seminal work on measuring volatility using high-frequency data
by Andersen and Bollerslev (1998) proposes the realized volatility or
variance1 (RV), which is robust to market microstructure effects. For a
given fixed interval, RV is defined as the sum of squared returns over
non-overlapping intervals. Thus, RV can directly be observed, and it en-
ables researchers to gauge the level of RV and understand its dynamics.
The early study on describing and predicting RV is based on the
autoregressive fractionally integrated moving average (ARFIMA) model
proposed by Andersen et al. (2003). Although the ARFIMA model
achieves a higher forecast accuracy than GARCH-class models
(e.g., Koopman et al., 2005; Liu and Wan, 2012), Corsi (2009) points
out that the ARFIMA model is just a convenient mathematical trick,
lacks a clear economic interpretation, and leads to the loss of information
on a vast number of transactions. Corsi (2009) also constructs a simple
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heterogeneous autoregressivemodel of the realized volatility (HAR-RV),
which can capture “stylized facts” in the financial markets, such as long
memory and multi-behavior. As a result, HAR-RV model is commonly
employed to forecast the volatility using high-frequency data.

Studies on forecasting volatility using high-frequency data have
mainly concentrated on the stock and exchange rate markets (e.g.,
Andersen et al., 2007a; Corsi et al., 2010; Bekaert and Hoerova, 2014;
Bollersleva et al., 2015; Degiannakis, 2008; Duong and Swanson, 2015;
Wang et al., 2016). Nevertheless, to the best of our knowledge, there
are insufficient studies on forecasting the oil futures price volatility
using high-frequency data. For example, Degiannakis and George
(2016) point out that studies, such as Haugom et al. (2014), Sévi
(2014), Prokopczuk et al. (2016), and Wen et al. (2016), try to forecast
oil price volatility using ultra-high frequency data. Therefore, in this re-
search, as a first step, we use the HAR-RV model and its various exten-
sions to forecast the realized volatility of the oil futures price. To be
precise, we label those twelvemodels as HAR-RV-typemodels, which in-
clude: HAR-RV (Corsi, 2009), HAR-RV-J and HAR-RV-CJ (Andersen et al.,
2007a, 2007b), HAR-RV-TJ (Corsi et al., 2010), HAR-S-RV-J (Chen and
Ghysels, 2011), HAR-RV-PS2 and HAR-RV-PS3 (Patton and Sheppard,
2015), HAR-CSJ and HAR-CSJd (Sévi, 2014), HAR-ARJ (Prokopczuk
et al., 2016), HAR-RV-JLM and HAR-S-RV-J-JLM (Liu et al., 2016).

HAR-RV-type models are linear, and the estimated coefficients of
those models are constant. However, Granger and Ding (1996) find out
that persistence in volatility is usually non-constant over time. Previous
studies (e.g., Longin, 1997; Raggi and Bordignon, 2012; Goldman et al.,
2013;Ma et al., 2015) provide evidence that a higher level of persistence
exists when volatility is low, implying the presence of nonlinearities.
Moreover, it is well known that due to many factors, such as business
cycle, major events, and economic policy, the statistical property of vola-
tility (e.g., volatility persistence) always undergoes structural breaks
(e.g., Banerjee and Urga, 2005; Wahab and Lee, 2009) or switches be-
tween different regimes (Hamilton and Susmel, 1994). Therefore, it is
appropriate to use a model with regime switching to describe volatility
dynamics. For example, Goldman et al. (2013) use threshold
autoregressive fractionally integrated moving average (TARFIMA)
modelswith regime switching and show that TARFIMAachieves a higher
forecast accuracy than ARFIMA. Raggi andBordignon (2012) find that in-
troducing nonlinearities leads to a better prediction for several forecast
horizons. Though it is the fact that considering nonlinear and highly per-
sistent dynamics of realized volatility can significantly improve the fore-
casting performance, a little has been done on forecasting realized
volatility by using HAR-RV-type models with regime switching. There-
fore, we introduce regime-switching characteristics to the HAR-RV-
type models and examine whether HAR-RV-type models with regime
switching can forecast better than HAR-RV-type models without regime
switching. In regime switchingmodels, one of the aspects is deciding the
number of regimes. Similar to the existing studies, such as Bekaert et al.
(2015), Goldman et al. (2013), Ma et al. (2015), Raggi and Bordignon
(2012), Shi and Ho (2015), and Wang et al. (2016), we also consider
two regimes: low volatility regime and high volatility regime.

The aim of this paper is to forecast the realized volatility of the crude
oil futures price using HAR-RVmodels and their extensions. This research
contributes to the literature of modeling realized volatility in two ways:
(a) to forecast the realized volatility of the oil futuresmarket, we consider
the nonlinear and highly persistent dynamics of realized volatility, com-
bine HAR-RV-type models with the regime switching, and construct
new volatility models, which can provide a new perspective to model
and forecast the volatility of the oil futures. Furthermore, the proposed
models are instrumental since Nomikos and Pouliasis (2011) point out
that a regime-switching model may be more suitable for modeling vola-
tility, particularly in energy markets, where structural breaks are quite
common, because oil market volatility is characterized by different dy-
namics under different market conditions. For instance, Fong and See
(2002, 2003) document a strong evidence of regime switching in the tem-
poral volatility dynamics of oil futures, consistent with the theory of

storage. Nomikos and Pouliasis (2011) also state that an increase in
backwardation is more likely to increase regime persistence in the high
volatility state due to low inventories; and (b) evaluating the forecasting
ability of HAR-RV-typemodels with regime switching, we find that those
models can gain greater accuracy in prediction and that further promotes
the applications of those models to forecast the realized volatility using
the ultra-high frequency data. Moreover, the proposed HAR-RV-type
models with regime switching can also be applied to forecast the future
volatility of the other markets, such as stock and exchange markets.

In this paper, we compare the forecasting performance HAR-RV-
type models and their extensions with regime switching based on the
model confidence set (MCS) test under HMSE and HMAE loss functions.
In-sample results show that the negative semi-variation has a signifi-
cantly positive impact on the realized volatility, implying that the nega-
tive semi-variance contributes more to the realized volatility. Also, the
high volatility regime is short-lived. Out-of-sample empirical results in-
dicate that introducing the regime-switching behavior of daily realized
volatility in HAR-RV-typemodels leads to greater forecast accuracy. Our
results also show that the same findings are valid for another volatility
benchmark - realized kernel (RK) (e.g., Barndorff-Nielsen et al., 2008)
and different forecasting windows. We further consider high and low
volatility regimes for all variables in volatility models and warrant that
regime switching can significantly help in forecasting.

The rest of the paper is organized as follows: Section 2 describes the
volatility measures and models. The methodology of out-of-sample
forecasting and the Model Confidence Set (MCS) test are discussed in
Section 3. Section 4 provides the data and some preliminary analysis.
The empirical forecasting results are presented in Section 5. Section 6
concludes the paper.

2. Volatility models

Section 2 briefly describes several popular volatility measures based
on intraday high-frequency data and the corresponding extended
models with regime switching capturing the volatility dynamics.

2.1. Realized volatility and realized bi-power variation measures

The primary interest is to measure the daily variance of oil futures
returns, which will be estimated from the realized variance. For a given
day t, we divide the time interval, which is considered as [0, 1], into n
subintervals of length, where n=1/Δ and Δ is the sampling frequency.
Consequently, the realized volatility can be defined as the sum of all
available intraday high-frequency squared returns and given by,

RVt ¼
X1=Δ
j¼1

r2t−1ð Þþ j�Δ;Δ ð1Þ

where r(t−1)+ j∗Δ ,Δ represents the intraday returns. According to
Barndorff-Nielsen and Shephard (2004), when Δ → 0, RV can be
expressed as:

RVt →
Z t

0
σ2 sð Þdsþ

X
0 b s ≤ t

κ2 sð Þ ð2Þ

where ∫0tσ2(s)ds is called as the integrated variance computed by real-
ized bi-power variation (BPV), which can be defined as:

BPVt ¼ u−2
1

X1=Δ
j¼2

r t−1ð Þþ j�Δ;Δ
�� �� r t−1ð Þþ j−1ð Þ�Δ;Δ

�� �� ð3Þ

where u1 ≃ 0.7979.
X
0b s≤ t

κ2ðsÞ is the discontinuous jump part of the qua-

dratic variation (QV) process. Let Jt ¼
X

0b s ≤ t

κ2ðsÞand that can bewritten

as Jt=max(RVt−BPVt,0) (Barndorff-Nielsen and Shephard, 2004; An-
dersen et al., 2007a, 2007b).
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