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A B S T R A C T

One of the major challenges of today’s policy makers and industry strategists is to achieve an electric-
ity mix that presents a high level of energy security within a range of affordable costs and environmental
constraints. Bearing in mind the planning of a more reliable electricity mix, the main contribution of this
paper is to consider parameter uncertainties on the electricity portfolio optimization problem. We assume
that the expected and the covariance matrix of the costs for the different energy technologies, such as gas,
coal, nuclear, oil, biomass, wind, large and small hydropower, are not exactly known. We consider that
these parameters belong to some uncertainty sets (box, ellipsoidal, lower and upper bounds, and convex
polytopic). Three problems are analyzed: (i) finding a energy portfolio of minimum worst case volatility
with guaranteed fixed maximum expected energy cost; (ii) finding an energy portfolio of minimum worst
case expected cost with guaranteed fixed maximum volatility of the energy cost; (iii) finding a combination
of the expected and variance of the cost, weighted by a risk aversion parameter. These problems are written
as quadratic, second order cone programming (SOCP), and semidefinite programming (SDP), so that robust
optimization tools can be applied. These results are illustrated by analyzing the efficient Brazilian elec-
tricity energy mix considered in Losekann et al. (2013) assuming possible uncertainties in the vector of
expected costs and covariance matrix. The results suggest that the robust approach, being by nature more
conservative, can be useful in providing a reasonable electricity energy mix conciliating CO2 emission, risk
and costs under uncertainties on the parameters of the model.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Working to ensure either energy security as a whole, or electricity
security in particular, is a major responsibility of national govern-
ments. One of the major challenges of today’s policy makers and
industry strategists is to achieve an electricity mix that presents a
high level of energy security within a range of affordable costs, con-
sidering environmental and economic scenarios. There is no doubt
that an electricity shortage can severely harm economies. This was,
for instance, what happened in Brazil in 2001 when, due to rationing,
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the total Brazilian electricity consumption decreased by 7.89%, while
the GDP variation was still positive, by +1.3%. However, according
to SPE — Secretaria de Política Econômica do Ministério da Fazenda
(2001), the growth rate for the year 2001 would be in a range of
2.4% and 3.6%, without the crisis of the electricity sector. At the same
time, the local industry had to deal with the scarce supply associated
with skyrocketing electricity prices in the short term market, that
ultimately transformed positive margins of electric intensive compa-
nies into negative ones. From January 2001 up to May of that same
year the spot market price in the Southeast submarket increased by
twelvefold, jumping from R$ 56.92 to R$ 684.00 in Brazilian reals,
during the rationing period. Since the required infrastructure to
provide electricity takes time to be in place, good planning is always
critical in this industry, especially in large populated developing
countries such as China, India, Indonesia, Brazil, and many others
which present high increasing rates for their electricity demand.
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Mean-variance optimization, originally introduced by Markowitz
(1959), is one of the most important models in portfolio optimization
and also the basis for asset allocation. However, as pointed out
in Rustem et al. (2000), for the optimal mean-variance strategy
to be useful the set of expected return of the component assets
and the covariance matrix should be sufficiently precise. Indeed it
was shown by Black and Litterman (1991) that small changes in
the expected returns can produce large changes in asset allocation
decisions. In practice this lack of robustness with respect to the
inherent inaccuracy of the expected returns and covariance matrix
estimates prevents the widespread use of mean-variance optimiza-
tion by practitioners. Due to that several robust versions of portfolio
optimization problems, including mean-variance optimization, have
been proposed in the literature, considering uncertainties on the
expected returns and covariance matrix (see, for instance, Rustem
et al., 2000; Bertsimas et al., 2011; Costa and Paiva, 2002; Costa and
Nabholz, 2002; El Ghaoui et al., 2003; Fabozzi et al., 2007a; Goldfarb
and Iyengar, 2003; Kim et al., 2014; Lobo and Boyd, 2000; Tütüncü
and Koenig, 2004).

Nowadays the mean-variance optimization tools have been
widely applied in energy policy, considering the trade-off between
the risks and costs of using different energy generation technologies
(see, for instance, Awerbuch, 2006; Awerbuch and Berger, 2003;
Bazilian and Roques, 2008; Delarue et al., 2011; Doherty et al., 2006;
Favre-Perrod et al., 2010; Liu and Wu, 2006; Mari, 2014; Marrero
and Ramos-Real, 2010; Marrero et al., 2015; Roques et al., 2010;
Roques et al., 2008; Shakouri et al., 2015). Usually the analogy with
the financial market is to consider the random price per MWh of
each technology instead of the returns of the assets, so that it is
desired to minimize the expected cost of the energy portfolio for a
given level of uncertainty obtained from the covariance matrix of
the costs. Frequently these expected values and covariance matrix
of the different energy technology costs are obtained from Monte
Carlo simulations using the levelized cost of electricity (LCOE), which
naturally yields to imprecision on these parameters.

To deal with the challenge of fostering a more reliable electricity
mix, the main contribution of this paper is to workout the application
of some of the results from robust asset portfolio theory (see for
instance Costa and Paiva, 2002; Fabozzi et al., 2007a; Goldfarb and
Iyengar, 2003; Kim et al., 2014; Lobo and Boyd, 2000; Fabozzi et al.,
2007b) for electricity planning and policy-making. Similarly as con-
sidered in the robust financial portfolio literature, we assume that
the expected costs and the covariance matrix for the different energy
technologies are not exactly known but, instead, belong to some
uncertainty sets (box, ellipsoidal, componentwise lower and upper
bounds, and convex polytope defined by some known vertices). The
motivation for that is, as pointed out above, Monte Carlo simulations
are usually used for obtaining these parameters, which naturally
yields to imprecision on them. Besides that, this approach gives
room for the possible inclusion of different future scenarios for the
expected energy costs and covariance matrices.

Three problems will be analyzed in this paper: the first one is
to find an energy portfolio of minimum worst case volatility with
guaranteed fixed maximum expected energy cost. The second one
is to find an energy portfolio of minimum worst case expected cost
with guaranteed fixed maximum volatility of the energy cost. The
third one is a combination of the expected and variance of the cost,
weighted by a risk aversion parameter. As in the robust financial
portfolio literature (see for instance El Ghaoui et al., 2003; Fabozzi
et al., 2007a,b; Kim et al., 2014) these problems can be written as
quadratic, second order cone programming (SOCP) or semidefinite
programming (SDP) (see the Appendix), so that the robust optimiza-
tion numerical packages nowadays available for this class of prob-
lems can be used (see, for instance, Boyd and Vandenberghe, 2004).
For the case in which the model distinguishes the energy coming
from already existing plants (denoted by “old” energy) of the energy

that comes from the new ones (denoted by “new” energy) the prob-
lems mentioned above can be simplified. In this situation all the old
energy will be used in the energy portfolio so that any increase in
size of each technology, must be with “new plants” (see for instance,
Losekann et al., 2013), yielding to a reduction on the number of
variables in the optimization problems.

This paper is organized in the following way: Section 2 presents
the notation, basic results, and problem formulation that will be con-
sidered throughout the work. Sections 3 and 4 introduce the robust
electricity energy mix optimization problems, the considered uncer-
tainty sets, and the formulation of the robust portfolio optimization
problems in terms of quadratic, SOCP or SDP optimization problems.
Section 5 considers the situation in which all the “old” energy will be
used in the energy portfolio so that any increase in size of each tech-
nology must be with “new plants”, which yields to a reduction on
the number of variables in the optimization problems. In Section 6
we illustrate the robust technique by analyzing the efficient Brazilian
electricity energy mix considered in Losekann et al. (2013) with 8
energy technologies, classified as “new” energy and “old” energy. The
paper is concluded in Section 7 with some final comments. We recall
in the Appendix some basic facts on SDP and SOCP.

2. Preliminaries

2.1. Notation

We denote by Rm the m-dimensional euclidian space (R= R
1

for simplicity) and by ‖.‖2 the usual euclidian norm. We define by
1 the vector of appropriate dimension formed by 1 in all positions,
and ′ denotes the transpose of a vector or matrix. For symmetric
matrices Q and R, and a matrix S, we write for notational simplicity(

Q S
� R

)
:=

(
Q S
S′ R

)
. By P � 0 (P � 0 respectively) we mean that the

symmetric matrix P is positive definite (positive semidefinite), and
P1/2 represents the square root matrix of P. For two matrices P and S
with the same dimension we write P > S (respectively P ≥ S) if for
each element of P and S we have Pij > Sij (Pij ≥ Sij). For real num-
ber xi, i = 1, . . . , n we denote by diag(xi) the n × n diagonal matrix
with the element xi on the entry (i, i), and zero elsewhere. Let X be
a space of real vectors or matrices. For a collection of points vi ∈ X,
i = 1, . . . , j, we define the convex polytope Con{v1, . . . vj} as

Con
{

v1, . . . vj
}

:=

{
v ∈ X; v =

j∑
i=1

kivi,
j∑

i=1

ki = 1,ki ≥ 0

}
.

Finally the expected value of a random vector V will be denoted
by E(V), its covariance matrix by Cov(V), and for V, U random vectors
we define Cov(V, U) = E((V − E(V))(U − E(U))′). If V is a scalar random
variable we set V ar(V) as the variance of V.

2.2. Mean variance theory

Harry Markowitz (1959) developed the Theory of Portfolio Selec-
tion (TPS) in the 1950s to answer the question of how a risk averse
investor should allocate resources among different investments.
According to his theory, the investor should consider the trade-
off between risk and return with risk being measured through the
variance of asset returns. This model became a new paradigm in
finance. Based on TPS approach, it is possible to construct an effi-
cient frontier describing the optimal return for each possible level of
risk. According to the investor’s risk preference — or the investor’s
utility function — he or she will choose a point in the efficient fron-
tier, and will obtain a specific portfolio. Formally, the mean variance
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