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A B S T R A C T

In this paper, we develop a novel approach to electricity price modeling, based on the powerful technique
of stochastic time change. This technique allows us to incorporate the characteristic features of electricity
prices (such as seasonal volatility, time varying mean reversion and seasonally occurring price spikes) into
the model in an elegant and economically justifiable way. The stochastic time change introduces stochastic
as well as deterministic (e.g., seasonal) features in the price process’ volatility and in the jump component.
We specify the base process as a mean reverting jump diffusion and the time change as an absolutely
continuous stochastic process with seasonal component. The activity rate of the stochastic time change
can be related to the factors that influence supply and demand. Here we use the temperature as a proxy
for the demand and hence, as the driving factor of the stochastic time change, and show that this choice
leads to realistic price paths. We derive properties of the resulting price process and develop the model
calibration procedure. We calibrate the model to the historical EEX power prices and apply it to generating
realistic price paths by Monte Carlo simulations. We show that the simulated price process matches the
distributional characteristics of the observed electricity prices in periods of both high and low demand.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

1.1. Motivation

Electricity prices from liberalized markets exhibit features that
are rarely observed in other commodity markets. Besides strong
demand-related price seasonalities, electricity prices exhibit large
spikes, which arise due to non-storability of electricity, non-elasticity
of demand and, in case of renewable electricity generation, of
supply. The occurrence of positive price spikes is related to supply
interruptions and to the increased demand during periods of
abnormally high or low temperatures. Negative spikes — which is
a rather recent phenomenon — are related to power generation by
e.g., wind farms, which cannot be “switched off”. Such price spikes
are usually short-lived as prices rapidly return to their “normal”
levels once disruptions in supply are resolved. The electricity price
volatility is also related to demand, increasing during periods of high
demand. This leads to seasonal patterns not just in prices, but also
in the volatility. All these features make electricity price modeling a
challenging task.

* Corresponding author.

A large variety of electricity price models have been described
in the literature. The so-called reduced-form models range from
jump-diffusions or Levy-driven diffusions (Geman and Roncoroni,
2006, Cartea and Figuera, 2005, Meyer-Brandis and Tankov, 2008,
Klüppelberg et al., 2010, Barndorff-Nielsen et al., 2013) to regime
switching (Huisman and Mahieu, 2001, Paraschiv et al., 2015) to
time series models of the ARMA-GARCH type (Benth et al., 2014).
Neural networks, agent-based models, fuzzy systems and other
AI-based models also have been extensively applied to electricity
prices. An important special class of models — the so-called structural
models — incorporate external factors such as demand, capacity, load
and fuel prices into the electricity price formation process. Weron
(2014) provides an excellent recent survey of literature on electricity
price modeling and forecasting.

Despite the voluminous literature on modeling electricity prices,
there is no clear “winner” model. Such model should be versatile
enough to generate important price characteristics (seasonalities,
spikes and mean reversion), should incorporate at least some supply-
and demand-related information, while it should be tractable
enough to be useful in applications such as pricing of derivatives
(electricity futures and options). In this paper, we suggest such
a tractable continuous time model. This model can incorporate
demand and supply proxies as the main driving price factors in a new
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and ingenious way. Our approach is based on the powerful technique
of stochastic time change, previously successfully used in modeling
other asset prices. The main goal of this modeling exercise is gen-
erating price paths with the correct stylized facts and distributional
properties, particularly during different seasons (and hence, periods
of different demand). This is useful for scenario simulations or any
other applications where Monte Carlo generation of realistic price
paths is required.

1.2. Stochastic time change

The concept of time-changing of a continuous time stochastic
process is a powerful tool for building models in financial mathe-
matics. It allows the model builder to introduce jumps and stochastic
volatility into standard models based on the Brownian motion.

Clark (1973) was the first author who observed that prices in
financial markets are more volatile on days when a lot of trading
takes place. This observation lead to the idea that calender time
might not always be the most appropriate way to measure time:
in equal calender time intervals, the activity in the market can be
very different. On the other hand, we can define a non-equidistant
time grid, such that in each time interval the amount of trading
activity is the same (the resulting new time scale is said to evolve
in operational time or business time). Consequently, asset returns in
each such interval should have the same distributional properties.
This has been empirically confirmed by Ané and Geman (2000), who
extended Clark’s ideas and recovered normality of asset returns by
stochastic time change based on order flow.

To define business time, the most important issue is to identify
the triggers that determine the speed of the market. For example,
Clark (1973) considers the accumulated traded volume as the
relevant factor for cotton markets, while Ané and Geman (2000)
conclude that in stock markets the appropriate time scale should be
defined using the accumulated number of trades.

Stochastic time change can be defined in two distinctive ways.
The first one is by means of the so-called subordinators, which are
non-decreasing Levy processes (pure jump processes plus a linear
deterministic drift). Time-changing a Brownian motion by such a
subordinator results into another Levy process and hence, introduces
jumps into an otherwise continuous stochastic process.

Another way to define it is by means of an absolutely continuous
time change. Such time change is defined as the time integral over
the so-called activity rate, which can be seen as a proxy for the
(trading) activity in the market. On a day with a high trading activity,
the activity rate is high as well and so, time evolves quicker.

In electricity markets, the spot prices are driven largely by
demand, which in turn depends on the outside air temperature. In
the summer months, electricity is used for air conditioning and in
the winter for heating, which leads to an increased demand for elec-
tricity during periods of sufficiently high or low temperatures. A
number of previous electricity price studies explore this relationship.
For example, Bessec and Fouquau (2008) investigate the effect of
temperature on electricity demand in Europe. As this effect depends
on the regional climate as well as on heating and cooling habits
in different countries, they differentiate between cold, medium and
warm countries. In order to filter out the part of the demand that can
be explained by the temperature, they remove the effect of other,
non-climatic factors on electricity consumption: demographic and
technological trends, monthly seasonality (in particular, the decrease
in production during summer). They find that the functional rela-
tionship between the electricity demand and temperature has a
parabolic form, with the minimum at around 16 ◦C: the “neutral”
temperature with respect to energy demand, where neither heating
nor airconditioning is needed in continental Europe.

There is also a well-documented positive relationship between
energy price volatility and demand. Kanamura (2009) investigates

this relationship for natural gas prices and explicitly models gas
price volatility as a function of demand. Yang et al. (2002) study
this relationship for crude oil prices in US, and a recent study by
Jobling and Jamasb (2015) extend this to worldwide oil markets.
Li and Flynn (2004) document the relationship between volatility
and demand for various electricity markets.

In this paper, we specify an activity rate for the time change
in electricity markets on the basis of a demand proxy, which is in
our case the temperature. For that, we will explore the functional
relationship found by Bessec and Fouquau (2008). However, this is
not the only possible choice, and other choices for stochastic clock’s
activity are possible, for example, those related to the supply (such
as wind speed or sunny hours for markets which are largely driven
by the wind or solar energy).

When specifying a time-changed stochastic process, we need to
decide on the general, basis features of the price evolution. Ané
and Geman (2000) show that asset returns are normally distributed,
when these are recorded not in calender time, but in business time.
Other applications of time-changed processes in finance also try to
recover normality in returns. These studies assume a (geometric)
Brownian motion as the main driver of the price process in business
time, so a Brownian-based diffusion often functions as the basis
model for the stock price. This seems to be an important element of
the success of those studies. However, electricity prices exhibit more
complex features than stock prices, so a Brownian motion alone —
neither in an arithmetic nor geometric form — would be appropri-
ate as the basis model. Mean reversion and jumps should be inherent
features of such a model. Therefore we choose a mean reverting jump
diffusion as the price process in business time. Note that it is possi-
ble to introduce jumps into a continuous process (such as Brownian
motion) by a Levy subordinator-based time change (but not by
an absolutely continuous time change — see Barndorff-Nielsen and
Shiryaev, 2010). However, our main goal is to mimic demand-driven
seasonal and stochastic features in the price volatility and the jump
components, which is possible to do by specifying the absolutely
continuous time change with the activity rate related to the demand
proxy. Combining mean reverting jump diffusion (the base process)
with a stochastic and seasonal activity rate, our resulting spot price
model will keep the properties of mean reversion and jumps, but will
have stochastic and seasonal features in the jump intensity, rate of
mean reversion and volatility.

In the existing finance literature, most studies that consider time
changed models use a (geometric) Brownian motion or a general
Lévy process as the base process (see e.g., Carr et al., 2003, Carr and
Wu, 2004 or Kallsen and Muhle-Karbey, 2011). One exception is Li
and Linetsky (2014), who combine a mean reverting model for com-
modity prices with a time change and derive futures and option
prices in terms of Hermite expansions. They examine whether their
spot price model leads to futures and option prices with empirically
observed features as the Samuelson Effect for futures and implied
volatility smiles for options. Lorig (2011) considers mean-reverting
models with stochastic volatility, based on Fouque et al. (2000).
However, the spot price model assumed in that paper is not itself
mean reverting. As Li and Linetsky (2014), Lorig (2011) performs
a time-change and, using spectral theory and singular perturbation
techniques, derives an approximation for the price of a European
option.

In this paper we apply a stochastic time change technique to elec-
tricity price modeling, as well as outline a calibration procedure and
the empirical application to the German electricity market. Using a
demand-based time change, we are able to have a solid economic
interpretation of our model. Using the temperature (which can be
accurately forecasted) as the proxy for the demand, the model can
be applied to obtain distributional forecasts of the electricity price,
by predicting its volatility and the probability of a large price spike,
which is valuable especially during a cold season.
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