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a b s t r a c t

The paper presents a decision support approach to solving problems characterized by spatially-explicit
decision variables, multiple objectives, and preferences for ancillary decision criteria. The approach offers
a three-step workflow, in which Pareto non-dominated solutions to a multi-objective decision problem
are generated with a spatially adaptive genetic algorithm, objective value trade-offs are examined in
an interactive graphics environment, and the selected solution alternatives are evaluated on the bases
of ancillary multiple criteria. The three-step workflow is demonstrated on the example of a selection
problem involving alternative configurations of sensors for radioactivity monitoring in a trans-border
region including the state of Lower Saxony in Germany and the Netherlands. The presented approach
promotes the search for diverse, non-dominated solution alternatives by coupling a fuzzy logic system
with spatially adaptive genetic operators. The three-step workflow offers a comprehensive approach to
spatial decision support starting with diverse option generation, through exploration of decision objec-
tive trade-offs, to multiple criteria evaluation of the selected non-dominated decision alternatives.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Spatial Decision Support Systems (SDSS) has been an important
subfield of GIScience, with contributions to many other fields
including agriculture, business, civil engineering, environmental
and resource management, health care, transportation, and urban
planning. Sugumaran and DeGroote (2011) identified 447 publica-
tions on the subject of SDSS published since 1986 with more than a
half appearing after 2003. A concept of decision support, followed
in a number of these publications, derives from a well-known
three-stage model of decision making proposed by Simon (1960),
and focuses on stages 2 (design) and 3 (choice). Design, in the
decision making context, involves search for decision options
(alternatives) characterized by attributes, and bounded by
constraints owing to the internal/external requirements. Choice
is an evaluative step, in which the designed decision options are
systematically evaluated on the bases of common evaluation
criteria. This conceptualization of decision making has shaped
the meaning of decision support as an analytic process involving
search for feasible decision options followed by their systematic
evaluation.

In GIScience, the concept of spatial decision support extends
beyond the above notion by focusing on geographical characteris-
tics and spatial (topological) relationships guiding the search for
and evaluation of decision options. At an operational level, two
approaches to spatial decision support have emerged over the last
three decades: (1) a multiple criteria evaluation approach, and
(2) a spatial optimization-based approach. The former, facilitated
by spatial analysis operations and a Boolean combination of
spatial and attribute queries performed typically in a GIS, has
been used in search for locations satisfying suitability criteria. In
order to discriminate among suitable locations, various multiple
criteria evaluation techniques have been proposed and integrated
with GIS (Malczewski, 2006). Search for decision alternatives
representing suitable locations has been also the focus of the
spatial optimization-based approach (Tong & Murray, 2012). Both
approaches offer different strategies for structuring a decision
problem, searching for, and evaluating its solutions. Over the past
twenty years some efforts have been made at integrating
GIS-based multiple criteria evaluation with spatial optimization
in order to create versatile spatial decision support systems
(Bojorquez-Tapia, Diaz-Mondragon, & Ezcurra, 2001; Cromley,
1994; Cromley & Hanink, 1999; Cromley & Hanink, 2003; Kao &
Lin, 1996; Sinha and Silavisesrith, 2012; Coutinho-Rodrigues,
Simao, & Antunes, 2011; Wang, Lee, Peng, & Wu, 2013). Yet,
integrating both approaches has received little attention relative
to the overall research on SDSS. A potential benefit of integrating
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GIS-based multiple criteria evaluation with spatial optimization
includes leveraging combinatorial search capabilities of the latter
with scoring functions of the former, and in effect providing a
systematic approach to first generating, and then evaluating
non-dominated decision alternatives. Another potential benefit
includes a possibility of expanding a model of decision situation
by including its ancillary characteristics, represented by evaluation
criteria, that otherwise might be difficult to incorporate in a spatial
optimization model.

This paper contributes to research on integrating the two
important methodological areas of SDSS by presenting an integra-
tive spatial decision support approach for generating, exploring,
and evaluating decision alternatives comprised of discrete,
point-based location. The approach is comprised of a three-step
workflow, in which a spatially adaptive, multiple objective genetic
algorithm generates Pareto non-dominated solutions. Then, an
interactive trade-off exploration technique is deployed to narrow
down a potentially large number of non-dominated solutions to
a few choices. This is followed by multiple-criteria evaluation of
the selected solutions using ancillary spatial criteria. An applica-
tion of the workflow is demonstrated on the example of hazard
management, in which a decision task involves selecting a geo-
graphic configuration of environmental sensors for radioactivity
monitoring in a trans-border region of Lower Saxony in Germany
and the Netherlands. The remainder of the paper is structured as
follows. A brief discussion of heuristic optimization methods for
generating decision alternatives is presented in section two. This
is followed by an overview of the tri-step workflow for generating,
exploring, and evaluating Pareto-efficient decision alternatives. An
application of the workflow for optimizing the geographical config-
uration of radioactivity sensors is presented in section four. The pa-
per closes with the discussion of the application example and with
general comments on a broader applicability of the presented
approach.

2. Multi-objective optimization and genetic algorithms

Geographical decision problems involving multiple objectives,
such as facility site location and vehicle routing, are commonly
solved with optimization methods (Church & Murray, 2009;
Church & et al., 2003; Malczewski, 2006; ReVelle & Eiselt, 2005;
Tong & Murray, 2012). Optimization methods for multi-objective
problems typically involve transforming a spatial problem into a
single linear objective function by weighting and summing each
objective based on decision maker preferences (Cohon, 1978; Gal,
Stewart, & Hanne, 1999) This, however, requires a priori specifica-
tion of weights representing preferences for decision objectives.
There are other methods of solving multi-objective problems
requiring either a priori specification of preferences or a posteriori
selection by a decision maker from a set of non-dominated solu-
tions. Examples of the former are lexicographic method and goal
programming (Cohon, 1978) while an example of the latter is the
Normal Boundary Intersection (NBI) method (Das and Dennis,
1998).

In addition to preference specification, the complexity of opti-
mization algorithms arises from a computationally expensive
search for a global optimum. Consequently, exact solution methods
such as Linear Programming (LP) are not practical for solving large
size, NP-hard spatial optimization problems such as 0–1 integer
programming problems (Aerts & et al., 2003; ReVelle & Eiselt,
2005). Heuristic algorithms, including: tabu search (Murray &
Church, 1995; Rosing, ReVelle, & Rosing-Vogelaar, 1979), simu-
lated annealing (Aerts & Heuvelink, 2002; Duh & Brown, 2007;
Murray & Church, 1996; van Groenigen, Siderius, & Stein, 1999),
and evolutionary algorithms (Cao et al., 2011; Hosage & Goodchild,

1986; Xiao & Armstrong, 2006; Zhang & Armstrong, 2008), have
been employed to overcome these limitations and generate feasi-
ble solutions in a variety of NP-hard search and optimization prob-
lems. Because evolutionary algorithms, including their subset
called genetic algorithms (GA), have been developed to effectively
handle multiple-objectives and find non-dominated solutions even
in large optimization problems (Coello, 1999), they are a viable
method for generating feasible decision options in spatial prob-
lems with quantifiable decision objectives.

GA have been applied in solving a variety of geographic prob-
lems such as: landscape design (Roberts, Hall, & Calamai, 2011),
crime hot-spot analysis (Wu & Grubesic, 2010), locating utility cor-
ridors (Zhang & Armstrong, 2008), forest management (Ducheyne,
De Wulf, & De Baets, 2006), map labeling and cartographic gener-
alization (van Dijk, Thierens, & de Berg, 2002), choropleth map
classification (Armstrong, Xiao, & Bennett, 2003), facility location
(Jaramillo, Bhadury, & Batta, 2002) site suitability analysis (Zhou
& Civco, 1996), and environmental management policy making
(Bennett, Wade, & Armstrong, 1999; Bennett, Xiao, & Armstrong,
2004). GA operate with a population of potential solutions, and
typically generate multiple non-dominated solution alternatives
as a result. Multiple decision alternatives are particularly desirable
when stakeholders’ preferences are uncertain and examining
trade-offs among non-dominated decision alternatives can provide
additional information about their impacts (Ligmann-Zielinska,
Church, & Jankowski, 2008). GA formulations incorporating multi-
ple objective functions (Multiple Objective GA or MOGA in short)
explicitly represent multiple objectives in a problem formulation,
as opposed to commonly used scalar function approaches based
on LP, which transform multi-objective problems into a single-
objective scalarized function.

The general heuristic of a genetic algorithm can be applied to a
wide range of problems; however, efficiency of an algorithm can be
increased when problem specific knowledge is incorporated (Vrugt
& Robinson, 2007). In hazard scenarios, for example, a speed up in
computation time can result in a valuable decrease in decision-
making time. Xiao (2008) presents a framework to exploit spatial
structure in GAs, but cautions to avoid approaches that are too spe-
cific to individual problems. Incorporating spatial structure in GA
can result in a set of solutions that are diverse in their geographic
arrangement, which is desirable from the standpoint of providing
decision makers with diverse decision options (Bennett et al.,
2004; Ligmann-Zielinska et al., 2008). Tong, Murray, and Xiao
(2009) introduced in their single objective genetic algorithm a
crossover operation that is specific to facility location problems
and incorporates the geographic arrangement of facilities to pro-
mote dispersion. In the category of spatial decision problems
involving an arrangement of point-based locations, decision op-
tions are desired to have either clustering of point locations in
space or dispersion of point locations throughout space (Tong
et al., 2009). Cao et al. (2011) proposed a single parent crossover
operator, for land use allocation problem, based on a randomly se-
lected clump of cells fitting in a 3 � 3 cell window. The crossover
operation is accomplished by randomly selecting the locations
and the shape of the crossover clumps and swapping their cell val-
ues. Cao et al. (2011) claimed a 2-dimensional single parent cross-
over operator lead to faster solution convergence in land use
allocation problems than a traditional single-point or multi-point
crossover between two parents (chromosomes).

Another technique promoting diverse solutions, called fuzzy
adaptation (Tarokh, 2008), examines the population throughout
execution of the algorithm and adjusts operator probabilities using
a fuzzy sets approach. Jaramillo et al. (2002) used variable operator
probabilities in their genetic algorithm; however, the approach
was not based on problem specific knowledge and produced small
gains in objective performance in the solution set. The approach
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