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This paper selects stochastic volatility (SV) as the uncertainty or volatility measure to re-examine the Samuelson
hypothesis of maturity effect (SHME) (Samuelson, 1965). Stochastic dominance is used to examine whether the
stochastic volatility level dominates with respect to maturity. The empirical analyses of energy-futures price se-
ries generally provide mild support for this hypothesis in terms of the first two degrees of stochastic dominance.
Each type of futures has its own propertieswith respect to thematurity effect. SV levels play a role in determining
the testing outcome. The hypothesis ismore likely to hold at low SV levels. The higher the volatility level, the less
likely the SHME will hold because SV surges to its peak level regardless of maturity.
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1. Introduction

In his seminal works, Samuelson (1965, 1976) postulates that the
volatility of a futures price increases as maturity decreases. Volatility is
the conditional standard deviation of a return series of futures and a
measure of its risk or uncertainty level. Kolb (1997) attributes this
phenomenon to the increase in the pace at which information is
acquired as the contracts near maturity. That is, the futures prices
becomemore volatile as more relevant news is released as the delivery
date nears. As maturity approaches, the futures price must converge to
the spot price. The futures prices do not necessarily respond instantly
and significantly to the arrival of new information. This leads to strong
reactions by futures prices once new information is disseminated,
especially right before the maturity date. This conclusion is called the
Samuelson hypothesis of maturity effect (SHME).

This hypothesis underscores the crucial role that time-varying vola-
tility plays in quantitative risk management, at least in the topics of fu-
tures trading (speculation and hedging), derivative pricing (e.g., futures
and option on futures), risk measurement, futures market efficiency,
and margin setting (Houthakker and Williamson, 1996; Focardi and
Fabozzi, 2004). For example, generally in energy futures trading, the
higher the futures price variability, the higher minimum margin re-
quirement. Accordingly, the validity of SHME dictates whether we can

reduce speculation and volatility by determining the minimummargin
requirement of futures traders (Serletis, 1992a).

Previous literature provides mixed conclusions about the empirical
examination of the SHME. For example, Serletis (1992a), Galloway
and Kolb (1996), and Beaulieu (1998) provide strong supporting evi-
dence for the SHME. Liu (2014), Gurrola and Herrerias (2011), and
Daal et al. (2006) render mildly supportive outcomes. Rutledge
(1976), Milonas (1986), Chen et al. (1999), and Brooks (2012) arrive
at contrary conclusions. There are at least six major implications from
this inconclusiveness.

First, Samuelson's (1965, 1976) assumptions do not necessarily hold
true in practice. The assumed stationarity in first-order autoregressive
futures price series, i.e., martingale or ergodic process, are not usually
supported by actual data. The implicit assumption that the standardized
sample variances are normally or log-normally distributed is only good
for the theoretical framework setup. The SHMEmay not hold when the
cash price is nonstationary. The actual cash price exhibits non-constant
variance. The assumption that the futures price equals the expected
value of the settlement price at a delivery date is not supported by em-
pirical findings, as concluded by Anderson (1985). Consequentially,
SHME is not necessarily tenable due to these arbitrary assumptions.
Alternatively, the distribution of the sample variances of futures price
changes should be considered unknown, and the observed pattern of
futures return volatility does not exhibit a systematic increasing or
decreasing trend.

Second, variance is not necessarily an appropriate measure for risk
or uncertainty level (McNeil et al., 2005). Variance is defined as an
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aggregate measure of the symmetric deviation away from the mean.
The variance estimate is contingent on the length of the data period.
This measure cannot describe the volatility level on a point-by-
point basis. Neither can this measure differentiate between positive
and negative deviations from the mean. Further, variance can only
be used for past-realized volatility. A rolling-window estimation of
variance can help dynamically depict the volatility process, but the
estimation outcomes are contingent on the arbitrary selection of win-
dow length. These inadequacies in the variance limit its empirical
usefulness in the examination of the SHME. Alternatively, the unob-
servable contemporaneous volatilities are treated as latent (unob-
served) random variables in a stochastic volatility (SV) framework.
This framework has a noticeable advantage in that it can depict the
volatility process in a point-wisemanner and capture contemporane-
ous volatilities. This paper focuses on stochastic volatility as the level
of volatility or uncertainty.

Third, as Samuelson (1976) highlights, the SHME is not suitable to
short-term testing, thus the data period should be sufficiently long.
However, this note is set aside in the previous empirical studies. Further,
each futures price of a specific commodity has its own properties. There
are several articles that claim to conduct “extensive,” “vast,” or
“comprehensive” empirical exploration of futures contracts (Daal
et al., 2006; Brooks, 2012). However, several articles have reached the
same conclusions that SHME holds in agricultural markets but not in fi-
nancial andmetalmarkets (Bessembinder et al., 1996; Kalev andDuong,
2008; Duong and Kalev, 2008). Before judging the degrees of coverage
of futures contracts, it is inappropriate to make an overall conclusion
on numerous futures contracts based on the outcomes of tests of the
SHME. In essence, the key issue in examining the SHME involves the
data length more than the contract type, as Samuelson (1976) pointed
out. To stress test the SHME, this paper selects an industry that contains
one of the most volatile futures contracts: energy. The futures price se-
ries for empirical examination of the SHME in this paper are those for
crude oil, reformulated regular gasoline, RBOB regular gasoline, No. 2
heating oil, and propane traded on the New York Mercantile Exchange
(NYMEX). The U.S. Energy Information Administration has posted
those data series, covering up to 29 years of daily data. This length of
time from which data was used is generally longer than those in
previous studies.

Fourth, confirmed time-varying volatility (heteroscedasticity) is en-
demic in financial markets. The previous empirical analyses rely mostly
on time-series models (Engle, 1982; Engle and Bollerslev, 1986) to
capture the conditional volatility process, e.g., Gupta and Rajib (2012).
Tsay (2012) does provide some cautionary words, but they are
generally overlooked. For example, unconditional density of financial
return series show pronounced leptokurtosis. Time series of financial
data show significant patterns of volatility as clustering and squared
returns exhibit pronounced serial correlation. ARCH and GARCHmodels
can be trapped into model misspecification. The conditional volatility is
assumed stochastic, but thosemodels specify that the time-varying vol-
atility follows a parametric deterministic process. In addition, the per-
formance of GARCH models in capturing the tail behavior remains
limited even with standardized Student t innovation. Some significant
properties presented in the time-series data could play a significant
role in determining the outcomes of estimation and hypothesis testing;
these include unit root, cointegration, causality, and structural break
(Serletis, 1992b; Bekiros and Georgoutsos, 2008; Maslyuk and Smyth,
2009; Bekiros andDiks, 2008; Chen et al., 2014). The SVmodel is consid-
ered a better alternative in these regards. Anderson and Shephard
(2009) echo this recommendations, stating that SV is superior inmodel-
ing leverage effect and considering excess skewness and kurtosis. Those
advantages can help evaluate SHME at higher orders of moments. Fur-
ther, Hafner and Preminger (2010) and Carnero et al. (2004) underline
the significant flexibility of SV in capturing the empirical regularities
due to its limited assumption and capacity in capturing contemporane-
ous volatilities.

Fifth, there are noteworthy constraints and challenges in SV estima-
tion. By treating SV in a state-space formulation, one describes contem-
poraneous volatilities as latent random variables as opposed to the
deterministic values. This formulation leads to the intractability of the
likelihood function and prohibits its direct evaluation. This challenge is
overcome by the introduction of Markov chain Monte Carlo (MCMC)
for fully Bayesian implementation through the SV framework
(Jacquier et al., 1994). This introduction has been further refined by
Kastner and Frühwirth-Schnatter (2014) for amore efficient estimation.
Thus, Bayesian parameter estimation viaMCMC is adopted in this paper.

Sixth, in addition to the issues highlighted in the first point, such as
unknown distribution of the sample variances of futures price, signifi-
cant structural breaks are usually present in the SV series. These proper-
ties can have a considerable impact on traditional methods of
estimation and testing outcomes. Yet, the previous literature does not
consider this issue. Alternatively, it is proper to employ stochastic dom-
inance (SD) for testing the SHME because SD accommodates skewness
and other data irregularities. SD is free of any assumptions and incorpo-
rates information on the entire SV distribution (Sriboonchitta et al.,
2010). The use of SD helps us rank the SDs with different maturities to
examine the SHME.

In short, this paper contributes and exhibits an innovativeway to re-
examine the SHME. This paper includes five types of energy futures
price series for almost three decades of daily data. SV is adopted as the
uncertainty measure and SD is implemented to revisit the SHME. The
empirical analysis of the outcomes generally provide mild support to
the SHME. SD testing outcomes are contingent on the SV levels. The
SHME is more likely to be supported in a series with a low SV level.
The SHME does not necessarily hold for higher SV levels, especially at
critical market moments. This paper contributes the literature by re-
examining the SHME in detail from a novel perspective based on SV
and SD.

The rest of the paper is structured as follows: Section 2 reviews the
SV model. Section 3 outlines SD. Section 4 describes the data source
and discusses the empirical results. Section 5 concludes.

2. A brief review of stochastic volatility models

Tsay (2010) highlights that while uncertainty in volatility is impor-
tant, it is often overlooked. The SV models outperform ARCH and
GARCH models in terms of capturing the higher orders of moments of
a volatility model. The GARCHmodel is designed to model the volatility
process in a deterministic model specification. Alternatively, the SV
model captures the volatility process in a probabilistic manner
(Kastner, 2016). That is, the SV model describes the volatility process
through a state-space model in which the latent states are represented
by the logarithm of the squared volatilities and follows an
autoregressive process of order one. Kim et al. (1998) conclude that,
in practice, SV models outperform GARCHmodels. SV models postulate
that volatility is driven by its own stochastic process. SV models under
the continuous-time framework are known for capturing some stylized
features of financial data (Han et al., 2014). Shephard and Andersen
(2009) summarize the advantages of SV models over GARCH models.
For example, SV models can approximate the return distributions by a
mixture of distributions where the mixture reflects the level of activity
or news arrival. A SV model can also accommodate an asymmetric re-
turn–volatility relation. These advantages are influential in modeling
the uncertainty level. This paper thus selects SV as the criterion for em-
pirical examination.

There are two major estimation methods for SV models: moment
methods and simulation methods. While the former are often simpler,
they are inefficient. The latter attempt to achieve a close approximation
of the likelihood function through computationally expensive simula-
tion methods (Bauwens et al., 2012). To overcome intractability of the
likelihood function for SV parameter estimation, MCMC is introduced
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