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Integrated assessment models (IAMs) are playing an increasingly important role in long-run sustainability
analysis. At their core is a set of global economic and environmental accounts which capture a complete set
of inter-industry and inter-regional relationships in the global economy in a consistent manner. While much
attention is focused on the raw data and parameterization required to expand or add sectoral detail to IAMs,
only rarely is there discussion of how different matrix balancing methods (i.e. translating disparate raw data
sources into the consistent database) affect modeling results. This article offers an in-depth look into the
database–modeling nexus in IAMs, focusing on the electric power sector which is both a major source of CO2

emissions and a critical vehicle for climate change mitigation. Comparisons of the prevailing matrix balancing
algorithms show how the choice of database reconciliation methodology affects modeling results using policy-
relevant simulations in the context of the electric power sector. The resulting insights can be applied to the
disaggregation of other, technology rich sectors in the economy. We conclude that appropriate selection of
database reconciliation methodologies can reduce the deviation between bottom-up and top-down modeling.
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1. Introduction

It is increasingly apparent that standalone economic, biophysical,
atmospheric, or other data-driven numerical models cannot address
long-run sustainability issues which cut across traditional academic
boundaries. Such issues include, but are not limited to: anthropogenic
climate change; environmental degradation; and energy, food, and
water security. Integrated assessment models (IAMs) marry social, eco-
nomic, and environmentalmoduleswithin a single framework to offer a
clearer picture of how sustainability issues might evolve in the future
and how public policies might alter this trajectory. In light of the com-
plex policy issues facing the world today, IAMs with increasing sector-

level detail have grown in popularity (Tol, 2006). Correspondingly, it
is useful to identify and characterize new sources of uncertainty in
IAMs and how they affect uncertainties in policy impacts (Weyant,
2009).

This recent push toward sector-level detail has not always been
the norm. Early IAMs such as DICE (Nordhaus, 1992) and RICE
(Nordhaus and Yang, 1996) included a single, aggregate economic
sector. However, this stimulated interest in IAMs in policy circles
which led to a demand for increased sector detail. This has brought
the IAM community into intimate contact with the computable gen-
eral equilibrium (CGE) modeling community. CGE models offer con-
sistent theoretical underpinnings of inter-sectoral and inter-regional
interactions across the entire global economy. Furthermore, adding
sectoral detail is relatively straightforward and well-studied. As
such, CGE models are becoming the preferred economic module in
IAMs – especially for energy-related research. For example, 12 of
the 18 models used in the EMF 27 study are CGE-based (Kriegler
et al., 2014).

Sectoral extensions require disaggregating the largely aggregate
sectors in an existing CGE database into detailed sub-sectors to analyze
specific technologies andpolicy shocks (McFarland et al., 2004; Edmonds
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et al., 2004; Paltsev et al., 2004). For example, in the case of the electric
power sector, many prevailing CGE databases (e.g. Narayanan et al.,
2012) only include a single aggregate industry1; however, increasingly,
policies are directed at specific generating technologies (e.g. solar
investment tax credits, nuclear phase-out). Further, economic shocks
may impact diverse generating technologies in different ways (e.g. a
drop in the price of natural gas). Thus, several leading research groups
independently disaggregate the electricity sector into electricity sub-
sectors which include several generating technologies (Brenkert et al.,
2004; Paltsev et al., 2005; Wing, 2008; Burniaux and Château, 2008).

Greater sector-level detail allows IAMs to explore new (and
reoccurring) research vistas such as energy policy (Bhattacharyya,
1996), agriculture/biofuel linkages (Kretschmer et al., 2009), and
climate policy (Sugandha et al. 2009; Ciscar and Dowling, 2014;
Rausch and Mowers, 2014). Introducing the detailed technologies
involves two basic tasks: i) disaggregating an aggregate sector in a
CGE database into sub-sectors or technologies (e.g. electric power into
specific generating technologies) and ii) creating mathematical
equations to represent supply and demand in the new sectors.Modelers
typically devote the most attention and the greatest amount of
documentation to the latter – that is, characterizing the supply and
demand behavior in the detailed sub-sectors. Unfortunately, much less
attention is placed on the constructing the disaggregated baseline data-
base which defines key economic relationships in the economy and
which, as this study demonstrates, can play a key role in determining
model outcomes.

The disaggregation process consists of two basic steps: i) collecting
technologically-rich, sector-detailed (often termed “bottom-up”) data
which, when price and quantity data are combined, imply some value
flows in thenew sub-sectors and ii) amethod to allocate these estimated
value flows across sub-sectors while meeting CGE accounting (“top-
down”) constraints. Unfortunately, the disaggregation process used in
constructing the newly disaggregated database is often weakly or even
wholly undocumented. When the disaggregation process is published,
the focus is on the bottom-up data and less so on the construction
method. Lenzen (2011) argues thatmodels based on the disaggregation
of sectors into individual activities generally perform better than
modeling the aggregate sector, even when the information used to
disaggregate is fragmentary. But how should this fragmentary informa-
tion be combined and reconciled with the key economic relationships
implied by the original top-down data?

This article shows that the choice of database reconciliationmethod-
ology has a significant impact onmodeling results. Four commonly used
disaggregation methods are compared: i) the pro rata method used by
Marriott (2007), Lindner et al. (2014), and Arora and Cai (2014),
ii) minimum sum of column cross-entropy (MSCCE) (Golan et al.,
1994; Robinson et al., 2001), iii) RAS (e.g. Lahr and de Mesnard,
2004), and iv) share preserving cross-entropy method which does not
impose a column constraint (SPCE) (Peters and Hertel, 2016). The
experiments use identical bottom-up data to create the balanced
matrices and are then taken as input to a simple partial equilibrium
(PE) model which allows us to analytically trace how economic
relationships, which arise from the different disaggregation methods,
impact modeling results.

The modeling analysis focuses on three contemporary economic
shocks. Simulation results using the four different balanced databases
are compared to simulation results using the unbalanced data to
determine how well they replicate the bottom-up results. The first is a
technology-specific capital subsidy (e.g. an investment tax credit).
This is useful since it highlights the value of preserving the cost structure
in the sub-sectors. In this specific experiment, deviations from the

bottom-up data in terms of electricity production range from −2% to
36% in magnitude depending on matrix balancing method, indicating
significant economic deviation between methods. The second example
involves a shock to the price of natural gas (e.g. a result of the shale
gas boom in the United States). Finally, a sector-wide capital tax
(e.g. removal of a sector-wide tax credit) is considered. This experiment
illustrates the importance of preserving “row shares” in the reconciled
database (i.e. the relative capital intensity of different technologies in
the power sector). This experiment shows that not only magnitude,
but also direction of simulation results can differ based on matrix
balancing method. While the deviation in balancing method is also
dependent on the original deviation between the bottom-up and
top-down data, the conclusions drawn here, using real data, indicate
that economic results can be highly dependent on the balancing
methods used to construct a CGE database and flow directly from the
mathematical features of the algorithms.

In current practice the database construction methods used in IAMs
are, at best, not adequately documented. This point will only increase
in importance with the increasing demand for more highly resolved
analysis of critical sectors in IAMs. The results shown in this article
advocate for greater introspection at the database–modeling nexus.
More broadly, the authors hope it will redirect attention back to the
validation of new and innovative CGE and IAM extensions. Finally, the
results provide evidence that the appropriate selection of matrix
balancing methods can reduce the overall deviation between bottom-
up and top-down modeling.

2. Database construction

This article focuses on the matrix balancing methods used to
reconcile bottom-up data with the aggregate databases required by
top-down IAM and CGE models. Schneider and Zenios (1990) provide
the following description of the matrix balancing problem: “Given a
rectangular matrix A, determine a matrix X that is close to A and
satisfies a given set of linear restrictions on its entries.”Matrix balancing
for disaggregation of a sector in I-O, SAM, and CGE databases consists of
thematrixA, with elements ait, where i is the input and t is the new sub-
sector, constructed from the values implied by the bottom-up data for
the disaggregate sectors. The linear restrictions, here, are the top-
down economic accounting conditions (e.g. supply equals demand)
and any other restrictions (e.g. non-negativity) required for modeling.
Matrix balancing methods generally differ in how they define the
“closeness” of X to A (e.g. an objective function) and the set of required
constraints.

2.1. Bottom-up data and the A matrix

The example presented in this paper is a disaggregation of the
electricity sector for the 129 regions in the Global Trade Analysis Project
(GTAP) version 8 database (Narayanan et al., 2012). Here, the original
power sector is disaggregated into seven new electricity sectors:
nuclear, coal, gas, oil, hydroelectric, wind, and solar power. The data
used for the disaggregation for this paper are:

i) qt— electricity production (in GWh)by technology, t (IEA, 2010a,
2010b),

ii) ui*— total value of inputs, i, (in US dollars) to the aggregate GTAP
electricity sector, and

iii) lit— levelized (i.e. annualized cost in US dollars per GWh) capital,
operating and maintenance (O&M), fuel, and effective tax costs
of electricity for generating technologies (IEA/NEA, 2010).

The data and formulations presented here are reduced to a single
region; each regional database can be estimated independently. The
elements of matrix A, ait, are thus the product of the levelized input

1 Themotivating example in this article is a disaggregation from an aggregate electricity
sector into several generating technologies. However, the discussion of the database-
modeling nexus is general to disaggregations of other sectors and extendable to estimat-
ing entire matrices.
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