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A B S T R A C T

The fact that model and parameter risk are important sources of uncertainty in option pricing models and
for risk management procedures has recently been recognised for financial markets, see Cont (2006); Morini
(2011); Bannör and Scherer (2013). In the context of energy markets, investment decisions are often based
on the valuation of fossil power plants as real options — depending on various underlying processes such
as the power-, carbon emission certificate-, and gas price. To capture parametric model risk inherent in
the valuation procedure of fossil power plants, we use a methodology recently established in Bannör and
Scherer (2013). As gas-fired power plants are seen as flexible and low-carbon sources of electricity, which
are important building blocks in terms of the switch to a low-carbon energy generation, we consider the
model risk in this asset class in detail. Our findings reveal that spike risk is by far the most important source
of parametric model risk.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction and motivation

Ever since the financial crisis struck the importance of models
has been in the centre of attention. In particular, it has been realised
that risk management is subject to model risk and that model
risk has to be adequately measured. Energy markets are substantially
exposed to parameter risk, or even ambiguity between different
possible models, as the underlying processes are driven by diffusion
and jump components resulting in a parameter space of considerable
dimension. In some cases, one might be able to assign probabilities to
the different models (resp. parameters within a specific model). Such
probabilities might be interpreted as a measure of trustworthiness
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that we assign to specific parameters. In the terminology of Knight
(1921), this corresponds to a situation with parametric model risk,
and obviously it is related to a Bayesian perspective on the topic.

For standard financial markets the issue has been addressed
extensively in recent years. For instance, Avellaneda et al. (1995)
and Cont (2006) consider worst-case scenarios and obtain a range
of possible prices for derivatives. Rebonato (2010) addresses model
risk issues concerning stress testing, while Glasserman and Xu
(2014) and Kiesel et al. (2014) discuss robust approaches to risk
management including model risk.

On the regulatory side the issue has been addressed by the Basel
Committee, BIS (2009) and the US Federal Reserve, FED (2011),
which actually states: “An understanding of model uncertainty and
inaccuracy and a demonstration that the bank is accounting for them
appropriately are important outcomes of effective model devel-
opment, implementation, and use”. In this context our approach
delivers a tool to perform an appropriate assessment of model risk.
The US Federal Reserve, FED (2014), also comments on the practical
implementation suggesting data handling and estimation in a simi-
lar way as we follow below. Morini (2011) provides an overview of
regulatory requirements and practical implementations concerning
model risk for various financial markets.
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In contrast, model risk has not been discussed in the context of
energy markets. Given that many structured and derivative contracts
cannot be marked to markets (due to limited liquidity), but have to
be marked to models, an assessment of potential model risk is partic-
ularly important. In view of the recent changes in European energy
markets, especially the German “Energiewende”, with the increasing
impact of remittent renewable energies, it is evident that models
need to be adjusted to changing market conditions. One important
aspect is the need for capacity decisions (replacements, new invest-
ments, and closures) in the power plant park on a company, national,
or even a European level. The financial streams of such an investment
can be generated on the market for energy derivatives in terms of
spread options. The specific application we consider is the valuation
of a gas-fired power plant via option pricing techniques.1 Flexible
gas-fired power plants2 have been built to address the need in peak
hours during the day. So their use is based on short-term demand,
which is highly affected by the uncertain feed-in of energy generated
by solar or wind power plants. Lambertz et al. (2012) discuss the
effect of remittent energy sources on the German electricity market
in detail and provide case studies showing particularly volatile days.
Gas-fired power plants can be represented as a clean crack spread
option, where the owner of such an option is long electricity and
short gas and emission certificates. A positive investment decision
is made in case such a contract is in the money, meaning that we
observe a positive spread on the time interval under considera-
tion. Clearly, such a valuation depends on many risk factors and the
stochastic model leading to the price of the power plant is highly
non-trivial. We investigate the parametric model risk within a given
well established modelling approach (see Section 3.2 for details). Our
focus is on identifying the parameters which have the highest impact
in case they are mis-specified. Thus we do not provide a horse race
between competing models (such an analysis has been done in Benth
et al. (2012)), but analyse the sources of parametric model risk within
a given model.

The present paper is organised as follows. In the next section we
review the methodology introduced by Bannör and Scherer (2013)
which we use to access model risk. In Section 3 we explain our
stochastic models for the relevant price processes. In Section 4
we undertake our empirical investigation, which consists of fitting
appropriate stochastic models to the various price processes, out-
lining the valuation procedure for power plants in terms of spread
options and the calculation of the relevant risk measures according
to techniques introduced. In Section 5 we apply these techniques
to analyse the parametric model risk of a gas-fired power plant.
Section 6 provides a summary and an outlook.

2. Incorporating parameter risk

Modelling electricity prices is a considerable task as the electric-
ity market is still developing and subject to changes in regulation and
market design. Nevertheless, there are numerous attempts trying
to explain and model the dynamics of electricity prices. For discus-
sions on the use of a regime-switching approach see De Jong (2006).
Meyer-Brandis and Tankov (2008) propose a Lévy process setting,
which was empirically investigated and compared to competing
approaches in Benth et al. (2012).

Carmona et al. (2012) use a structural approach in which prices
are generated with an equilibrium approach. Textbook accounts of
modelling approaches can be found in Eydeland and Wolyniec (2002)
or Burger et al. (2014). After choosing a specific model, one still

1 The optimal dispatch of thermal power plants under robustness considerations
has recently been addressed in Aïd et al. (2016) and Cartea et al. (2016).

2 According to Lambertz et al. (2012), p. 20, modern power plants are able to change
the load by 3 percentage points per minute.

has to determine the model’s correct parameters. In electricity mar-
kets, one typically relies on time series analysis to obtain a model’s
parameters due to the lack of liquid derivative prices to calibrate
to. Thus, the standard procedure is to estimate the parameters from
time series of electricity prices and to plug the point estimate into
the desired calculations afterwards, e.g. the calculation of electricity
derivative prices. But, when simply plugging in the obtained param-
eter for price determination, one disregards the whole information
which is contained in the distribution of the estimator. If a parameter
may be difficult to estimate (like, e.g., in presence of a small sample
size), one faces tremendous risk that one does not obtain the right
parameter due to the estimator’s bias and/or variance. This risk is
not neglectable: when calculating derivative prices, taking a slightly
different parameter than the right one may result in considerably
different prices (as demonstrated in Schoutens et al. (2004)).

Following the terminology of Knight (1921), the above problem
is described as parameter risk: via the estimator’s distribution one
has an idea about the likelihood of the different parameters, but
one does not know for sure whether the point estimate parame-
ter is the right one. To account for this, Bannör and Scherer (2013)
introduce the framework of parameter risk-captured pricing. This
generalises several ideas on treating parameter risk or uncertainty
suggested in Cont (2006), Gupta et al. (2010), Lindström (2010) and
provides a concise framework to incorporate parameter and esti-
mation risks into financial prices. This framework is discussed in
Section 2.1 below.

2.1. Measuring parameter risk and risk-captured prices

The methodology to measure parameter risk in the present con-
text is based on convex risk measures. The notion of convex (and
coherent) risk measures3 has emerged from the shortcomings of the
Value-at-Risk. The Value-at-Risk, being some upper quantile, is pop-
ular among practitioners and convenient to interpret, but there are
settings where the diversification of financial instruments is penal-
ized, i.e. a diversified portfolio of financial positions is regarded
more risky than the single positions. To overcome this unrealistic
property, alternatives, most notably convex risk measures, have been
developed.4

When speaking about “parameter risk”, we have a distribution R
on the parameter space H available that quantifies the likelihood/
trustworthiness of the different parameters.5 This allows us to define
the “risk-captured price” of some derivative X as a convex risk mea-
sure — evaluated on the derivative price regarded as a function of the
unknown parameter h. The idea is intuitive: (i) each parameter h ∈ H

implies some derivative price h �→ Eh[X]— but we are ambiguous
which parameter to trust. (ii) To reduce this resulting price distri-
bution (implied by the distribution R on H) to a number that is easy
to interpret, we apply a convex risk measure q to h �→ Eh[X]. Note
the difference to the standard approach in calculating risk numbers.
We apply risk measures to functionals on the underlying parame-
ter space and calculate price intervals according to the significance
levels of the risk measure. This addresses the risk implied by the
parameter variations (and not the risk implied by price variations as
in market risk calculations).

A formal definition of this procedure is given in Definition 1, an
illustration is provided in Fig. 1.

3 See the seminal paper Artzner et al. (1999).
4 Convex risk measures have been treated and extended in many papers, see

Kusuoka (2001), Föllmer and Schied (2002), Frittelli and Scandolo (2006), and there
are numerous tractable examples for convex risk measures available like, e.g., the
Average-Value-at-Risk, cf. Acerbi and Tasche (2002).

5 The distribution R on H may be induced, e.g., by an estimator ĥ = ĥ(X1, . . . , XN) via
the pushforward measure. Alternatively, it might be the result of expert judgement, a
calibration, etc.
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