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Weapply the non-parametric realized volatility technique and the associated jumpdetection test tomeasure vol-
atility and jumps in electricity prices. Then, we propose a group of logistic smooth transition heterogeneous
autoregressive (LSTHAR)models of realized volatility. Themodels can simultaneously approximate longmemory
behavior and describe sign and size asymmetries. They differ in the underlying heterogeneous autoregressive
structure and the transition variable specification. The out-of-sample forecast accuracy of the LSTHAR models
is evaluated through the Diebold–Mariano test and the superior predictive ability test, in terms of the mean
square error and the mean absolute error. Using high-frequency prices from the Australian New South Wales
(NSW) electricity market as empirical data, we draw the following conclusions. 1) Introducing the logistic smooth
transition structure with appropriate transition variable specification to the heterogeneous autoregressive models
improves volatility forecasts. 2)Overall, the LSTHARmodel that uses the sumof Beta functionweighted past returns
as the transition variable and includes past daily jumps as a predictor is the superior model for predicting volatility
in the NSWmarket. This model significantly outperforms the others.
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1. Introduction

In recent years, electricity markets in many countries have been
deregulated to introduce competition in supply and demand activities.
The supply and demand activities force the market to reach an equilib-
rium price so that trading can occur. However, due to unexpected
weather conditions and social/economic activities, the demand of
electricity exhibits seasonal fluctuations as well as sudden, dramatic
shocks. The supply of electricity also fluctuates as a result of plant out-
ages. Furthermore, the fact that electricity cannot be stored prevents
the use of inventory to smooth out supply and demand shocks. Accord-
ingly, electricity prices have become much more volatile, with abrupt
jumps that can be several orders of magnitude greater than the mean.
Therefore, the ability to accurately forecast electricity price volatility is
crucial for policy makers and for anyone who participates in the com-
petitive electricity markets.

Early research uses the generalized autoregressive conditional
heteroskedastic (GARCH) model (Bollerslev, 1986) and its various
extensions to model electricity price volatility.1 However, jumps are

generally not taken into consideration with these models, as they
would be difficult to identify.

Recent developments in econometric literature have enabled the
non-parametric estimation of price volatility and jumps. First, the real-
ized volatility (RV) (Andersen and Bollerslev, 1998), which is construct-
ed by aggregating squared intraday returns estimates total price
variation, making volatility “observable” for the first time.2 The realized
bipower variation (BPV) (Barndorff-Nielsen and Shephard, 2004) that is
constructed from the summation of appropriately scaled cross-products
of adjacent absolute intraday returns is a robust estimate of the non-
jump component of volatility. Tests for statistically significant jumps
can be constructed using the statistics proposed by Huang and
Tauchen (2005). Inspired by the heterogeneous market hypothesis
(Müller et al., 1993) and the HARCH model (Müller et al., 1997), Corsi
(2009) proposes the heterogeneous autoregressive model of realized
volatility (HAR-RV). Themodel parameterizes realized volatility as a lin-
ear function of lagged realized volatilities over different investment ho-
rizons and reproduces its longmemory property. Andersen et al. (2007)
further propose the HAR-RV-Jmodel and the HAR-RV-CJ model, respec-
tively. The former uses past daily jumps, along with the lagged realized
volatilities, as predictors of volatility. The latter separates the contribu-
tions to volatility forecasting of jump and non-jump components.
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1 For a complete review of the GARCH specifications that have been explored in the
electricity price volatility modeling literature, see the papers by Hickey et al. (2012) and
Liu and Shi (2013). These two papers also conduct comprehensive forecast performance
comparisons among various GARCH specifications.

2 Footnote 10 in Chan et al. (2008) points out that since electricity is not storable, there
is no such thing as a “return” in the traditional sense. However, the word “return” is still
used to represent log price difference.
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These three HAR models achieve superior fit and forecast performance
compared to the ARCH/GARCH models; thus, they have been widely
employed and extended in modeling financial return volatility.3

For electricity price data, Chan et al. (2008) apply theHAR-RVmodel
and the HAR-RV-CJ model to forecast the realized volatility of spot
prices in five Australian wholesale electricity markets. Haugom et al.
(2011) apply theHAR-RVmodel and theHAR-RV-CJmodelwith various
marketmeasures as predictors to forecast realized volatility in the Nord
Pool electricity forward market and discover forecast improvements
from the inclusion of exogenous effects. Haugom and Ullrich (2012)
propose the HAR-RV-F and HAR-RV-CJ-F models by including forward
realized volatility as a predictor and improve spot price volatility fore-
casts in the Pennsylvania–New Jersey–Maryland wholesale electricity
market. These studies utilize the HAR structure to characterize the
long memory property of realized volatility, and introduce additional
predictors under the guidance of financial theories for improved fore-
cast performance. It is also worthmentioning that the latter two studies
confirm the value of considering jumps in forecasting electricity price
volatility.

On the other hand, a separate line of literature has provided evi-
dence of the presence of asymmetric volatility dynamics; for examples,
see Hadsell et al. (2004), Bowden and Payne (2008), Knittel and Roberts
(2005), Hickey et al. (2012), and Liu and Shi (2013), among others. It is
empirically confirmed that positive shocks increase electricity price
volatility more than negative shocks, a condition known as the inverse
leverage effect. The aforementioned studies use the TARCH, EGARCH,
and APARCH models to capture the asymmetric response to positive
and negative shocks, which all assume that the volatility response to
price shocks does not depend on the current volatility level. However,
as noted by Anderson et al. (1999), the volatility can “response more
strongly to news which strikes when themarket is nervous and volatil-
ity is already high, than when such news reaches a calm and quiet mar-
ket”. Therefore, the current models that imply a single news impact
curve are too restrictive. Further, these latent volatility models do not
consider the impacts of jumps, and they are unable to describe the
long memory property.

To describe both the longmemory property and the inverse leverage
effect simultaneously, as well as allow the asymmetric news impact
curve to change shape with the variance in volatility, we propose a
group of logistic smooth transition heterogeneous autoregressive
(LSTHAR) models in this research. They are inspired by McAleer
and Medeiros (2008), who combine ingredients from the HAR-RV
model and the logistic smooth transition autoregressive models
(Teräsvirta, 1994). The underlying heterogeneous autoregressive
structure ensures that the long memory property is reproduced.
Sign and size asymmetries are captured by setting the transition vari-
able to a function of past returns.4 Since incorporating jumps improves
the forecast accuracy of electricity price volatility, we not only use the
HAR-RV model as the underlying structure, but also use the HAR-RV-J
and HAR-RV-CJ models, respectively. The in-sample fit and out-of-
sample forecast performance of these LSTHAR models are then empiri-
cally evaluated using high frequency spot prices from the Australian
New South Wales electricity market. This is the basis upon which we
provide volatility modeling suggestions.

We make several contributions. First, this is the first paper to intro-
duce the logistic smooth transition structure in modeling the realized
volatility of electricity prices. We show that introducing the logistic
smooth transition structurewith appropriate transition variable specifi-
cation to the heterogeneous autoregressive models improves volatility
forecasts in the NSW electricity market.

Second, we consider a large variety of new and existing LSTHAR
models. Specifically, we not only use the HAR-RV model as the un-
derlying structure (McAleer and Medeiros, 2008), but we also use
the HAR-RV-J and HAR-RV-CJ models. Thus, we can explore the ben-
efits of incorporating jumps into the volatility model. Furthermore,
besides using past daily, weekly, and monthly returns as transition
variables (McAleer and Medeiros, 2008), we propose the use of a linear
combination of weighted past returns as a transition variable, with the
Beta function (Ghysels et al., 2006) as the weighting scheme. Such de-
sign offers a richer variety of transition variable choices while only in-
curring two more parameters to estimate. Empirical results show that
the LSTHARmodel with the sum of Beta functionweighted past returns
as the transition variable and the HAR-RV-J model as the underlying
structure is the superior volatility model in the NSW market, signifi-
cantly outperforming the others.

Finally, we not only use the pairwise Diebold–Mariano (DM) test
(Diebold andMariano, 1995) to evaluate the value of introducing the lo-
gistic smooth transition structure in termsof volatility forecast accuracy,
but we also use the superior predictive ability (SPA) test of Hansen
(2005). The SPA test can provide robust comparison of the forecasts of
multiple models. Therefore, it is able to suggest the most appropriate
transition variable specification for each underlying HAR structure, as
well as the overall best LSTHAR model.

The remainder of this paper is organized as follows. Section 2 reviews
the calculation of realized volatility and jump detection. Section 3 intro-
duces the HAR models and the LSTHAR models. Section 4 describes the
data and provides descriptive statistics. Section 5 describes the forecast
comparison methods and presents the comparison results. Section 6
contains concluding remarks.

2. Realized volatility and jump detection

Assume that the logarithmic price pt of a given asset follows the fol-
lowing continuous-time jump-diffusion process:

dpt ¼ μ tdt þ σ tdwt þ ktdqt ; ð1Þ

where μt is the drift, σt is the instantaneous volatility, wt is a standard
Brownian motion, qt is a counting process with intensity λt, and kt is
the size of the corresponding discrete jumps in the logarithmic price
process.

The volatility of the price process over day t is measured by the qua-
dratic variation:

QVt ¼
Z t

t−1
σ s

2dsþ
X

t−1b s≤ t
ks

2
: ð2Þ

The first integrated variance term represents the contribution from

the continuous sample path, while∑t−1bs≤ tks
2 accounts for the contri-

bution from the jumps.
Suppose that the price is observed at discrete times j = 1,2,…, M

within each day t = 1,2,…, and let rt,j = pt,j − pt,j−1 be the jth intraday
return of day t. The realized volatility for day t is defined as:

RVt ¼
XM

j¼1
r2t; j: ð3Þ

The theory of quadratic variation indicates that the realized volatility
converges uniformly in probability to the quadratic variation as the
sampling frequency increases, that is: RVt → QVt for M → ∞.5

3 For extensions of the HAR models, see the papers by McAleer and Medeiros (2008),
Bollerslev et al. (2009), Andersen et al. (2011), Louzis et al. (2012), Corsi and Renò
(2012), Huang et al. (2013), and Qu and Ji (2014), among others.

4 Logistic smooth transition function is defined as:Gðzt ;γ; cÞ ¼ 1=ð1þ e−γðzt−cÞÞ, where
zt is the transition variable.

5 In reality,marketmicrostructure noisewill eventually render the realized volatility in-
consistent as a measure of the quadratic variation as the sampling frequency increases.
Five-minute sampling frequency is often chosen for active financial markets as a bias-
variance tradeoff. As for the NSW electricity market, we only have half-hourly prices. This
sampling frequency is relatively low; thus, the impact of market microstructure noise is
well controlled.
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