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A B S T R A C T

In day-ahead electricity price forecasting (EPF) the daily and weekly seasonalities are always taken into
account, but the long-term seasonal component (LTSC) is believed to add unnecessary complexity to the
already parameter-rich models and is generally ignored. Conducting an extensive empirical study involv-
ing state-of-the-art time series models we show that (i) decomposing a series of electricity prices into a
LTSC and a stochastic component, (ii) modeling them independently and (iii) combining their forecasts can
bring – contrary to a common belief – an accuracy gain compared to an approach in which a given time
series model is calibrated to the prices themselves.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Without doubt electricity price forecasting (EPF) is of prime
importance to the functioning of today’s energy business. Alongside
load forecasting, short-term (also called spot or day-ahead; for a
discussion see Weron, 2014) EPF has become the core process of
an energy company’s planning activities at the operational level.
Although it is very hard to quantify the benefits of improving load
and/or price forecasts, Hong (2015) provides interesting back-of-the-
envelope calculations. Based on U.S. data from the last decade, he
concludes that for a typical medium-size utility with a 5 GW peak
load, savings from a 1% reduction in the Mean Absolute Percentage
Error (MAPE) are as much as $1.5 million per year from short-term
load forecasting and $3 million per year from short-term load and
price forecasting! Hong’s simplified calculations coincide quite well
with more technical studies of Hobbs et al. (1999), who conclude that
on average a reduction of 1% in MAPE for short-term load forecasts
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decreases variable generation costs by 0.1%–0.3% when MAPE is in
the typical range of 3%–5%, and of Zareipour et al. (2010), who find
that when MAPE is the 5% to 15% range commonly observed for
short-term price forecasts, a 1% improvement in forecast accuracy
would result in about 0.1%–0.35% cost reductions. In both studies,
the level of actual savings depends to a large extent on generator
characteristics.

As has been noted in a number of studies, a key point in electric-
ity spot price modeling and forecasting is the appropriate treatment
of seasonality (Janczura et al., 2013; Keles et al., 2016; Lisi and
Nan, 2014; Maciejowska, 2014; Nowotarski et al., 2013). For mid-
term horizons – ranging from a few days to a few months ahead
and typically considered in derivatives pricing and risk manage-
ment applications – the daily profile is usually regarded as irrelevant
(Ignatieva and Trück, 2016; Janczura, 2014). In fact, most mid-term
EPF models work with average daily prices and focus on the annual
or long-term seasonal component (LTSC; also called the trend-seasonal
component). However, in short-term EPF the daily and weekly sea-
sonalities are always taken into account, but the LTSC is believed to
add unnecessary complexity to the already parameter-rich models
and is generally ignored (for recent reviews see Garcia-Martos and
Conejo, 2013; Weron, 2014). But is this the right approach? Should
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the LTSC be included in day-ahead EPF models, contrary to a common
belief that it is redundant in the short-term?

It is exactly the aim of this paper to address these two important
questions, that have not been investigated in the EPF literature to
date. We perform an extensive empirical study which involves:

• two 2-year long, hourly resolution test periods from two
distinct power markets (GEFCom2014 and Nord Pool),

• two autoregressive model structures — one originally proposed
by Misiorek et al. (2006) and later used in a number of EPF
studies (Gaillard et al., 2016; Kristiansen, 2012; Maciejowska
et al., 2016; Nowotarski et al., 2014; Nowotarski and Weron,
2016; Serinaldi, 2011; Weron, 2006; Weron and Misiorek,
2008; Ziel, 2016) and one which evolved from it during the
successful participation of TEAM POLAND in the Global Energy
Forecasting Competition 2014 (GEFCom2014; see Hong et al.,
2016; Maciejowska and Nowotarski, 2016),

• two novel Seasonal Component AutoRegressive (SCAR) models
that combine a 24 hour-ahead extrapolation of an estimated
LTSC with the forecasts of autoregressive models,

• two well-performing LTSC model classes — wavelet smoothing
and the Hodrick and Prescott (1997) filter, as advocated by
Janczura et al. (2013), Lisi and Nan (2014), Nowotarski et al.
(2013) and Weron and Zator (2015),

• model validation in terms of the robust weekly-weighted mean
absolute error (WMAE; see Weron, 2014) and the Diebold and
Mariano (1995) test,

and draw statistically significant conclusions with far reaching con-
sequences for day-ahead EPF.

The remainder of the paper is structured as follows. In
Section 2 we present the datasets. Then in Section 3 we describe
the techniques considered for price forecasting: two baseline
autoregressive model structures, two LTSC model classes and two
novel SCAR models. In Section 4 we summarize the empirical
findings and in Section 5 wrap up the results and conclude.

2. Datasets

The datasets used in this empirical study include two day-ahead
time series. The first one comes from the Global Energy Forecasting
Competition 2014 (GEFCom2014) — the largest energy forecasting
competition to date, both in terms of the diversity of competition
topics and wide geographic coverage of the participants (for details
see Hong et al., 2016). The dataset includes three time series at
hourly resolution: locational marginal prices, day-ahead predic-
tions of zonal loads and day-ahead predictions of system loads and
covers the period from January 1, 2011 to December 17, 2013.
During the competition the information set was being extended on a
weekly basis to prevent ‘peeking’ into the future. However, now it is
available in whole as supplementary material (Appendix A) accom-
panying Hong et al. (2016). In this paper we only use two subseries —
locational marginal prices and day-ahead predictions of zonal loads,
see Fig. 1. The origin of the data has never been revealed by the
organizers.

The second dataset comes from one of the major European power
markets — Nord Pool (NP). It comprises hourly system prices and
hourly consumption prognosis for four Nordic countries (Denmark,
Finland, Norway and Sweden) for the period January 1, 2013–
December 26, 2015, see Fig. 2. The time series were constructed using
data published by the Nordic power exchange Nord Pool (www.
nordpoolspot.com) and preprocessed to account for missing values
and changes to/from the daylight saving time (like in Weron (2006),
Section 4.3.7). The missing data values were substituted by the
arithmetic average of the neighboring values. The ‘doubled’ values
(corresponding to the changes from the daylight saving/summer

time) were substituted by the arithmetic average of the two values
for the ‘doubled’ hour.

For both markets, the day-ahead forecasts of the hourly electricity
price are determined within a rolling window scheme, using a 360-
day calibration window. First, all considered models (their short-
term and long-term components) are calibrated to data from the
initial calibration period, i.e. January 1 to December 26 (year 2011
for GEFCom2014 and 2013 for Nord Pool) and forecasts for all 24 h
of the next day (December 27) are determined. Then the window is
rolled forward by one day and forecasts for all 24 h of December 28
are computed. This procedure is repeated until the predictions for
the last day in the sample – December 17, 2013 (for GEFCom2014) or
December 26, 2015 (for Nord Pool) – are made.

3. Methodology

3.1. The benchmarks

Our choice of the benchmark models is guided by previous
literature on electricity price forecasting and experience gained
during the successful participation of TEAM POLAND in the GEF-
Com2014 competition. The modeling is implemented separately
across the hours, leading to 24 sets of parameters for each day
the forecasting exercise is performed. This approach is inspired
by the fact that each hour displays a rather distinct price profile,
reflecting the daily variation of demand, costs and operational con-
straints, and by the extensive research on demand forecasting, which
has generally favored the multi-model specification for short-term
predictions (see Weron, 2014 for a review).

The first benchmark belongs to the class of similar-day tech-
niques. Most likely it was introduced to the EPF literature by Nogales
et al. (2002) and dubbed the naïve method. It proceeds as follows:
hour h on Monday is similar to the same hour on Monday of the
previous week, and the same rule applies for Saturdays and Sundays;
hour h on Tuesday is similar to the same hour on Monday, and the
same rule applies for Wednesdays, Thursdays and Fridays. As was
argued by Conejo et al. (2005) and Nogales et al. (2002), forecasting
procedures that are not calibrated carefully fail to pass this ‘naïve
test’ surprisingly often. We will denote this benchmark by Naïve.

The second model is a parsimonious autoregressive structure
originally proposed by Misiorek et al. (2006) and later used in a
number of EPF studies (Gaillard et al., 2016; Kristiansen, 2012;
Maciejowska et al., 2016; Nowotarski et al., 2014; Weron, 2006;
Weron and Misiorek, 2008; Ziel, 2016). Within this model the natural
logarithm of the electricity spot price, pt = log(Pt), is given by the
following formula:

pt = 01pt−24 +02pt−48 +07pt−168 +08mpt +x1zt +
3∑

i=1

diDi +et , (1)

where the lagged log-prices pt−24, pt−48 and pt−168 account for the
autoregressive effects of the previous days (the same hour yesterday,
two days ago and one week ago), while mpt creates the link between
bidding and price signals from the entire previous day (it is the
minimum of the previous day’s 24 hourly log-prices). The variable zt

refers to the hourly zonal load of a US utility or Nordic consumption
(actually to forecasts made a day before, see Section 2). The three
dummy variables – D1, D2 and D3 (for Monday, Saturday and Sunday,
respectively) – account for the weekly seasonality. Finally, the ets are
assumed to be independent and identically distributed (i.i.d.) normal
variables. We will denote this autoregressive benchmark by ARX to
reflect the fact that the load (or consumption) forecast is used as the
eXogenous variable in Eq. (1).

The third benchmark is an extension of the ARX model, which
takes into account the experience gained during the GEFCom2014
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