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We evaluate alternative models of the volatility of commodity futures prices based on high-frequency intraday
data from the crude oil futures markets for the October 2001–December 2012 period. These models are
implemented with a simple GMM estimator that matches sample moments of the realized volatility to the
corresponding population moments of the integrated volatility. Models incorporating both stochastic volatility
and jumps in the returns series are compared on the basis of the overall fit of the data over the full sample period
and subsamples. We also find that jumps in the returns series add to the accuracy of volatility forecasts.
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1. Introduction

The volatility of commodity futures prices has become a topic of in-
creasing interest in recent years for academic researchers, practitioners
and those involved with the regulation of derivatives markets. Many
commodity futures markets have become increasingly ‘financialized’
over the past decade as financial firms with no inherent exposure to
the commodity have adopted a strategy of portfolio diversification
into commodity futures as an asset class.

Although this trend has affected many commodity futures markets,
it has had a marked impact on one of the most important markets:
that for derivatives of crude oil, which is now the most heavily traded
commodity futures contract by volume. Crude oil, as a key global
commodity, has experienced considerable price level variation in the
boom preceding the global financial crisis in 2008 and the ensuing
Great Recession. A major oil price shock in 2008 was caused by con-
straints on the production of crude oil paired with low elasticity of
demand (for details, see Hamilton (2009) and Kilian (2009)). This
shock, while being caused by fundamentals, was clearly exacerbated
by financial speculation and ‘financialization’ of commodities. Variation
in oil price levels has been accompanied by wide variations in the vola-
tility of returns. In the futures markets, returns exhibit heavy tails,

autocorrelation, and volatility clustering, leading to significant chal-
lenges in modeling their first and second moments.

Both the InternationalMonetary Fund (IMF) and the Federal Reserve
Board (see Alquist et al., 2011; IMF, 2005 p. 67, 2007, p. 42) use futures
prices as the best available proxy for themarket expectations of the spot
crude oil price.

Like many financial series, commodity futures prices are likely to
exhibit random-walk behavior. Such behavior in crude oil futures prices
implies that a model of prices or returns is not likely to beat the naïve
model. However, even if returns are not forecastable, their volatility
may be successfully modeled. In this paper, we employ various models
of stochastic volatility in order to analyze the uncertainty of crude oil
futures returns and to evaluate the forecastability of their volatility.
The empirical analysis makes use of high-frequency (tick-by-tick) data
from the futuresmarkets,first aggregated to 10-minute intervals during
the trading day. The intraday variation is then utilized to generate daily
time series of prices, returns and realized volatility.

Our sample period of October 2001 to December 2012 is character-
ized by high frequency fluctuations and fat tails. This is an appropriate
setting for our investigation of the role of jumps (modeled as extreme
events). Before performing any model estimation, we employ non-
parametric methods to identify the periods when these extreme events
might have occurred. Our empirical findings are in line with these test
results indicating a very high volatility during 2008.

The high frequency data allows us to test various models for oil fu-
tures returns using a straightforward Generalized Method of Moments
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(GMM) estimator that matches samplemoments of the realized volatil-
ity to the correspondingpopulationmoments of the integrated volatility
in the spirit of Bollerslev and Zhou (2002). These models are then com-
pared, in terms of overall fit of the data and forecast accuracy statistics,
over the full sample. The model with stochastic volatility and jumps is
also tested over a sub-sample (January 2006–December 2012) to
address structural stability (as in Andersen et al., 2002). Key findings
include the importance of both jumps and stochastic volatility in oil fu-
tures returns and the apparent unimportance of leverage as a modeled
component.

The wider applicability of this method of estimation to other mar-
kets is outside the scope of this paper, but an interesting topic for future
research.

2. Review of the literature

Schwartz (1997), Schwartz and Smith (2000),Casassus and Collin-
Dufresne (2005) propose multi-factor models for energy prices where
returns are only affected by Gaussian shocks only, but constrain volatil-
ity to be constant. Pindyck (2004) examines the volatility of energy spot
and futures prices, estimating the standard deviation of their first differ-
ences. Askari and Khrichene (2008) fit jump-diffusionmodels to futures
on Brent crude oil. Trolle and Schwartz (2009) propose a multifactor
stochastic volatility model for pricing futures and options on light
sweet crude oil trading on the NYMEX. Using daily data, they present
evidence that taking account of stochastic volatility improves pricing,
but they consider the inclusion of jumps to be less important. Vo
(2009) estimates a multivariate stochastic volatility model using daily
data on the West Texas Intermediate (WTI) crude oil futures contracts
traded on theNYMEXandfinds that stochastic volatility plays an impor-
tant role.

Larsson and Nossman (2011) find evidence for stochastic volatility
and jumps in both returns and volatility daily spot prices of WTI crude
oil from 1989 to 2009.

The role of volatility as ameasure of uncertainty of oil price futures is
stressed by Bernanke (1983) and Pindyck (1991) who show that this
measure of uncertainty is extremely relevant for firms' investment
decisions.

Our contribution lies in the use of the information on volatility of oil
futures returns provided by high frequency, intra-day data while focus-
ing on the role of volatility as measure of variability and uncertainty of
oil price forecasts.

3. Data description

We exploit the distributional information embedded in high-
frequency (10-minute interval) intraday futures price quotations on
crude oil in order to test for the presence of stochastic volatility and
jumps in crude oil futures returns.

Light, sweet crude oil (West Texas Intermediate) began futures trad-
ing on the New York Mercantile Exchange (NYMEX) in 1983 and is the
most heavily traded commodity future. Crude oil futures trade in units
of 1000 U.S. barrels (42,000 gallons), with contracts dated for 30 con-
secutive months plus long-dated futures initially listed 36, 48, 60, 72,
and 84 months prior to delivery. Additionally, trading can be executed
at an average differential to the previous day's settlement prices for
periods of two to 30 consecutive months in a single transaction. Crude
Oil Futures are quoted in dollars and cents per barrel.

The raw data used in this study are 10-minute aggregations of crude
oil futures contract transactions-level data provided by TickData, Inc.
For each 10-minute interval during the day trading session and for
each traded contract, the open, high, low, close prices are recorded,
along with the volume of trades in that interval. For the purpose of
computing returns, the trading session's close price and the following
trading session's close price are used to produce an estimated overnight
(or over-the-weekend) return.

Industry analysts have noted that to avoidmarket disruptions,major
participants in the crude oil futuresmarket roll over their positions from
the near contract to the next-near contract over several days before the
near contract's expiration date. A continuous price series over contracts,
which expire monthly, is created by hypothetically rolling over a posi-
tion from the near contract to the next-near contract three days prior
to expiration of the near contract.

The returns series and the realized volatility measures are displayed
in Fig. 1 and their descriptive statistics are given in Table 1 (descriptive
statistics for a shorter time series, January 2006 -December 2012, can be
found in Table 2). Both series exhibit excess kurtosis, while the realized
volatility series has a large skewness coefficient. The Kolmgorov–
Smirnov test for normality rejects its null for both series, while the
Shapiro–Francia test (1972) for normality concurs with those judge-
ments. The Box–Pierce portmanteau (or Q) test for white noise rejects
its null for both series. The daily returns series exhibits significant
ARCH effects at 1, 5, 10 and 22 lags, while no evidence of ARCH effects
is found in the realized volatility series.

4. Estimation method

Following Bollerslev and Zhou (2002), who use continuously ob-
served futures prices on oil, we build a conditional moment estimator
for stochastic volatility jump-diffusion models based on matching the
sample moments of realized volatility with population moments of
integrated volatility. In this context, as Andersen and Benzoni (2008)
have suggested, realized volatility serves as a non-parametric ex post
estimate of the variation in returns. In this paper, realized volatility is
computed as the sum of high-frequency (10-minute interval) intraday
squared returns.

4.1. No-jump case

The returns on futures at time t over the interval [t − k, t] can be
decomposed as

r t; kð Þ ¼ ln Ft− ln Ft−k ¼
Z t

t−k
μ τð Þdτ þ

Z t

t−k
σ τð ÞdWτ :

The quadratic variation or integrated variance, which coincide in the
no-jump case, can be expressed as

QV t; kð Þ ¼ IV t; kð Þ ¼
Z t

t−k
σ2 τð Þdτ:

In discrete time, the corresponding sample realized variance (RV)
can be described as

RV t; k;nð Þ ¼
Xn�k
j¼1

r t−kþ j
n
;
1
n

� �2

RV t; k;nð Þ→pIV t; kð Þ as n→∞

where n is the sampling frequency of 33 intervals per day when we
derive the daily RV.

4.2. Integrated volatility and jumps

When we allow for discrete jumps, the returns on futures at time t
over the interval [t − k, t] can be decomposed as

r t; kð Þ ¼ ln Ft− ln Ft−k ¼
Z t

t−k
μ τð Þdτ þ

Z t

t−k
σ τð ÞdWτ

þ
Z t

t−k
x τð ÞdN λτð Þ:
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