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recourse against any infeasibility, and robustness measures are introduced to examine the variability of the
second-stage costs that are above the expected levels. The IROM is suitable for risk-aversive planners under
high-variability conditions. The IROM is applied to a case of energy systems and CO, emission planning under

Q40 uncertainty. The results obtained can generate desired decision alternatives that are able to not only enhance
electricity-supply safety with a low system-failure risk level but also mitigate CO, emissions. They can be used
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for generating decision alternatives and minimizing the system cost of energy system while meeting the CO,-
emission permit requirement.
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1. Introduction

With rapid economic development and continual urban expansion,
energy demand is experiencing a sharply increase. Currently, many
countries and regions are relying primarily on fossil-fueled resources
(such as coal, oil and natural gas), such that 80% energy supply relies
on fossil fuels around the world (Pekala et al., 2010). Carbon dioxide
(COy) is a primary gas emitted from combustions of fossil fuels, and
increasing CO, concentration is likely to lead to the increase in surface
temperature, the change in global climate, and the rise in sea level.
For example, approximately 38% of current CO, emissions can be
attributed to the energy supply sector. The CO, concentration in the
atmosphere have been increased from approximately 280 ppm in
1750 to 367 ppm in 1999, while the global CO, emissions are
expected to exceed approximately 30 billion tons per year in the near
future (Baede et al, 2001; Chen et al, 2010; Li et al, 2011). In
addition, the average global temperature will rise in the range of 1.0
and 3.5 °C, and the sea-level will rise 15 cm to 95 cm in the next
90 years (Guo et al,, 2012; Lean and Smyth, 2010). Many scientists are
in puzzle about how to balance increasing electricity demands (due to
population growth and economic development), less fossil fuel
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consumption, and mandated requirement for reducing CO, emission
(Chen et al., 2010).

A great number of research efforts were undertaken for planning
CO,-emission mitigation in energy systems (Ang and Pandiyan, 1997;
Fraser et al., 2013; Lin and Huang, 2010). For instance, renewable ener-
gy sources or less CO, intensive fuels were used, such as wind-power,
natural gas power and nuclear power (CBC, 2003; Nasiri and Huang,
2008; Tampier, 2002). Carbon tax was proposed to encourage less
carbon-intensive fuels and to exploit alternatives (Roughgarden and
Schneider, 1999). Sequestration facilities were built up and used to cap-
ture CO, emitted from power plants during electricity generation pro-
cess (NRC, 2006). Besides, CO,-emission trading was envisaged within
the Kyoto protocol as one of flexible mechanisms, which was intro-
duced to help attain reduction of CO, emissions in a cost-effective way
(Copeland and Taylor, 2000; Kemfert et al., 2004; Nahorski and
Horabik, 2008; Su et al.,, 2010). Carlson and sholtz (1994) examined
the impact of uncertainty on actual emission levels on the optimal
design of trading schemes so as to limit price volatility. Ling (2006) pro-
posed an interval stochastic two-stage linear programming model to
consider how initial CO,-emission permit should be allocated at the
domestic and facility level with a politically and financially feasible allo-
cation pattern. Chen et al. (2010) discussed CO,-emission trading
scheme with an integrated energy system using interval two-stage sto-
chastic programming, which could deal with uncertainties expressed as
discrete intervals and random variables. In general, two-stage stochastic
programming (TSP) was effective for tackling optimization problems
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where an analysis of policy scenarios was desired and the model's coef-
ficients were random with known probability distributions (Y.F.Li et al.,
2010). However, a potential limitation of the conventional TSP is that it
can only account for the expected second-stage cost without any con-
sideration on the variability of the recourse values (Ahmed and
Sahinidis, 1998). In TSP, the objective is to minimize the sum of the
first-stage and expected second-stage costs, based on an assumption
that the decision maker is risk neutral (Bai et al., 1997). As a result,
the TSP may become infeasible when the decision maker is risk averse
under high-variability conditions. However, due to complexities and
uncertainties of energy systems, the desired energy resources allocation
patterns may vary with time under high-variability conditions; this
could result in energy systems becoming insecure and with a high risk
of electricity shortage (and thus a high economic penalty). Security is
a priority in energy systems planning throughout the world. Therefore,
the conventional TSP has difficulties in emphasizing safety of energy
system under high-variability conditions.

Robust optimization (RO) is an attractive technique that could help
tackle the above shortcomings. RO can bring risk aversion into optimi-
zation models and find robust solutions to energy and environmental
management problems. The concept of “robust” has two main implica-
tions: solution robustness and model robustness (Mulvey and
Vanderbei, 1995). If the optimal solution obtained from a robust
model remains “stable” when the input data has variations, it is
regarded as solution robustness; if a solution deems “almost” feasible
even if the input data has small change, it can be considered as model
robustness (Fan and Huang, 2012; Watkins and Mckinney, 1997). In
general, the conventional RO methods were effective in handling ran-
dom variables when their probability distributions were available;
however, the quality of available information about the uncertainties
is often not satisfactory for establishing probability distributions. More-
over, even if the uncertainties expressed as probability distributions are
available, it could be difficult to reflect them in large-scale stochastic
models (Y.P. Li et al,, 2010). In energy systems, various uncertain com-
ponents may exist and may not be available as probability distribution,
such as cost parameters, total electricity demand, residual capacities
and capacity expansion limitations. Interval-parameter programming
(IPP) is effective for handling uncertainties express as intervals. This
requires that IPP be introduced into the RO framework to reflect the
uncertainties with varied quality levels and presentation formats in
energy systems.

Therefore, this study aims to develop an inexact robust optimization
method (IROM) for planning CO,-emission trading within an energy
system. The IROM will incorporate interval-parameter programming
(IPP) within robust optimization (RO) framework, such that uncer-
tainties expressed as not only probability distributions but also interval
values can be tackled. Moreover, penalties are exercised based on the
recourse against any infeasibility and the consideration on the variabil-
ity of the second-stage random costs. Therefore, IROM analyzes the
results to gain insight into the tradeoff between energy system security
and economic objective. A case study will then be provided for demon-
strating the applicability of the developed method. Policy scenarios that
are associated with different CO,-emission mitigation levels will be
analyzed. The detailed tasks include: (a) assigning power demand to
different conversion technologies with a minimized system cost under
uncertainty, (b) generating an optimized capacity-expansion scheme
with considering timing and sizing, and (c) managing CO,-emission
with effective trading scheme.

2. Methodology

TSP can effectively handle uncertainties presented as probability
distributions, leading to the loss of valuable information in many
real-world planning problems. In TSP, decision variables are divided
into two subsets: those that must be determined before the realizations
of random variables are known, and those (recourse variables) that

are determined after the realized random variables are available. A
two-stage stochastic linear programming model can be formulated as
follows (Li et al., 2006):

Min f:CTlX—i-iphDTzY (1a)
h=1

subject to

AXZ<B.,reMM=12, .. 6m (1b)

AX+A'Y =Wy, ieM;M=1,2, .. ,myh=1,2, .. s (1)

;20 x;€X,j=12, .. ,my (1d)

Yin20,jn €Y, j=1,2, .. Myh=1,2, .. s (le)

In the above model, x* and y3; represent the first- and second-stage
decision variables, respectively; random variables take discrete values
Wy, with probability levels p,, where h = 1,2, ...,sand > p, = 1.
Obviously, the TSP can effectively deal with uncertainties in the
right-hand sides presented as random variables when the coefficients
in the objective function and left-hand sides of constraints are
deterministic.

Obviously, the TSP can tackle uncertainties expressed as random
variables; moreover, it can also reflect economic penalties as corrective
measures or recourse against any infeasibilities arising due to a particu-
lar realization of an uncertain event. However, it could neither account
for the variability of the random second-stage cost nor capture the no-
tion of risk under uncertainty (Bai et al., 1997). Fortunately, the robust
optimization (RO) method can tackle these complexities. In fact, the
RO method is a hybrid of stochastic and goal programs, to balance
tradeoff between the expected recourse costs and the variability of
these random values (Mulvey and Vanderbei, 1995). Consequently,
through incorporating the RO approach within the above TSP frame-
work, a stochastic RO model can be formulated as follows:

Min f = Cp X + hzs;phDsz +ph§;ph DTZY—phZ’s:DTZY (2a)
- - 7

subject to

AX<B.reM;M=12, .. m, (2b)

AX+A'Y 2 Wy, ieMi=12, .. myh=12, .. s (20)

=20, x;€X; j=1,2, .. n (2d)

Yin=0, x;€Y; j=1,2, .. np;h=1,2, .. v (2e)

In the above modeling formulation, the term of is

S
DTZ Y— ; phDTz Y
a variability measure on the second-stage penalty costs; the nonnega-

tive factor p represents a weight coefficient. Depending on the value
of p, the optimization may favor solutions with a higher expected

S
second-stage cost ) p,Dr,Y in exchanging for a lower variability in
h

the second-stage penalty costs as measured by

s
DT2 Y— Xh: Py D7'2 Y

(Takriti and Ahmed, 2004). When p = 0, the RO model can become a
conventional TSP one; the objective is only to minimize the first-and
second-stage costs. This also implies that the decision makers possess
a risk-neutral attitude and would not consider the variability of the
uncertain recourse costs. However, when p = 1, the decision makers
can consider the variability of the second-stage cost based on a risk-
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