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a b s t r a c t 

We document the extent to which major macroeconomic series, used to inform linear 

DSGE models, can be characterized by power laws whose indices we estimate via max- 

imum likelihood. Assuming data follow a linear recursion with multiplicative noise, low 

estimated indices suggest fat tails. We then ask whether standard DSGE models under 

constant gain learning can replicate those fat tails by an appropriate increase in the es- 

timated gain and without much change in the transmission mechanism of shocks. We find 

that is largely the case via implementation of a minimum distance estimation method that 

eschews any allegiance to distributional assumptions. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The ability of linear dynamic stochastic general equilibrium (DSGE) models to adequately account for macroeconomic 

fluctuations has come under scrutiny in light of the Great Recession. Such large but rare events manifest themselves in the 

form of fat tails for data that are usually employed in standard Gaussian empirical DSGE modeling under rational expecta- 

tions (RE). However, in the absence of additional assumptions on the stochastic nature of innovations, standard DSGE models 

are unable to replicate observed large fluctuations. 1 We show that a DSGE model under adaptive learning (AL) endogenously 

delivers model dynamics that better replicate observed fat tails. 

Existing DSGE analyses have explored at least three avenues to model large macroeconomic fluctuations. The first avenue 

replaces the assumption of Normally distributed innovations with a fat-tailed specification (e.g. a Student’s- t or Laplace). Fat 

tails in the distribution of innovations allow for a higher probability that a large shock occurs and works its way through 

standard transmission mechanisms. The second avenue replaces the assumption of a constant variance for structural in- 

novations with exogenous stochastic volatility specifications. The idea is that if one introduces exogenous volatility into a 

DSGE shock specification then macroeconomic variables will also exhibit the sort of volatility associated with rare but large 

fluctuations. The third avenue introduces time variation in the structural parameters of a model which in turn generates 

time or state dependent responses of economies to an otherwise constant variance shock process. All three avenues modify 

models so that exogenous sources of volatility are introduced in order to match observed volatility. Our analysis is closest 
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to the third avenue and presents an endogenous channel via stochastic gradient constant gain (SGCG) AL that delivers fat 

tails for endogenous variables in an otherwise standard model. 

AL is increasingly used by macroeconomists to bridge data-model gaps. Seminal work on statistical learning ( Sargent, 

1993; Evans and Honkapohja, 2001 ), additional insights from a similar literature ( Deak et al., 2015; Gaspar et al., 2006; 

Massaro, 2013; Milani, 2007; Orphanides and Williams, 2005 ; De Grauwe, 2012 ), and experimental evidence on the impor- 

tance of the learning process in accounting for business cycle fluctuations and volatility ( Adam and Woodford, 2012; Duffy, 

2012; Heemeijer et al., 2012; Jaimovich and Rebelo, 2007 ) provide strong support that AL is a reasonable alternative to the 

standard RE DSGE setting. In contrast to the standard RE DSGE model, in which agents know the true stochastic process of 

an economy, under AL agents revise their forecast rules in response to incoming data so as to ascertain that stochastic pro- 

cess over time. 2 This difference in how expectations are formed influences model dynamics. In particular, under RE, model 

dynamics are described by a fixed coefficient vector autoregression (VAR). Under SGCG learning however, model dynamics 

are described by a linear recursion with multiplicative and additive noise (LRMN) written as 

X t = �t X t−1 + ε t , (1) 

and with a stationary distribution for X t different than that of a VAR due to the interplay between the stochastic multiplica- 

tive term ( �t ) and the stochastic additive term ( εt ). 
3 As a function of the nature of the interplay, the applied mathematics 

literature shows that the tail of the stationary distribution of X t can be fatter than that of a Normal distribution (e.g. Kesten, 

1973 ). This implies that X t can take on extreme values with a higher probability than under a Normal distribution and thus 

this equation forms an alternative lens with which to view data and an associated model economy. In a sense the intuition 

of a LRMN system is as follows: as grains of sand pile up into a dune, at some point a grain falls that shifts the dune 

dramatically, and this dramatic movement occurs with some regularity. 4 

Since under SGCG learning a DSGE model is written as a LRMN, one needs to change the underlying assumption on the 

data generating process (DGP) from a fixed coefficient VAR to a LRMN. Under this new assumption, the tail of the stationary 

distribution of data ( Y t ) can be fat. We measure the thickness of the tail by estimating the tail index p under the assumption 

that Y t ∼ Y −p (a power law), since under SGCG learning model variables are distributed similarly. We also conduct a formal 

test to establish whether the hypothesized power-law is a plausible fit to the data and our test statistics show that data that 

enter a DSGE empirical exercise are usually not Normal. 

We find that data exhibit characteristics consistent with a LRMN assumption on the DGP. In particular, the data employed 

in DSGE models have fatter tails than would be warranted under a Normality assumption. We implement a minimum dis- 

tance estimation exercise that allows us to jointly estimate model parameters including the constant gain ( g ). Were our 

estimates of g small or near zero then model dynamics would approximate those of a RE DSGE model. However, we find 

that estimates of g are non-zero and in fact higher than in the current literature. 5 A finding of a higher constant gain does 

not violate any theoretical or empirical requirement that g be near zero (so an AL model is in a small vicinity of its RE 

solution). Further we show that a model under RE with Normally distributed innovations, or a model with fat-tailed distri- 

butions for innovations, is not able to come as close as a DSGE model under SGCG AL in terms of being able to replicate fat 

tails observed in data. 

These empirical and simulation results allow us to establish a central intuition, and therefore our key contribution: given 

that a larger g reflects a shorter memory (learning horizon), as g rises, macroeconomic variables are more likely to visit 

extreme values (deep recessions and booms), simply because agents do not remember as much of history as they could 

and therefore are bound to repeat it. Overall, we are able to show that without departing fundamentally from the standard 

DSGE model, SGCG AL is enough to account for observed fat tails without altering the model’s fit to other distributional 

dimensions of the data. 

Having established the model and described related literature in Sections 2 and 3 , we set out the stylized facts for all 

major macroeconomic time series in Section 4 . In Section 5 we reconcile data with model with a minimum distance exercise. 

Section 6 follows with simulation exercises and we conclude in Section 7 with a re-statement of our central contribution: 

that given the recurrent manner in which macroeconomic time series exhibit large fluctuations, LRMN model representations 

may be more suitable to empirical analyses of linear DSGE models. 

2. Rational expectations vs. adaptive learning 

Linear DSGE models begin by specifying a familiar form 

X t = A (θ ) E t (X t+1 ) + B (θ ) U t , (2) 

U t = P (θ ) U t−1 + ε t , E(ε t ε 
′ 
t ) = �(θ ) , (3) 

2 In the limit as the constant gain ( g ) of a SGCG learning process tends to zero, a model economy approaches the RE solution (see Evans and Honkapohja, 

2001 ). 
3 Our definitions for the process X t = �t X t−1 + ε t are as follows. If �t is a constant matrix � then we call it a fixed coefficient VAR. If �t varies over 

time in a deterministic manner we call it a variable coefficient VAR. If �t is itself a stochastic process then we refer to the equation as a LRMN. 
4 For similar intuition relating to the notion of self-organized criticality that a LRMN represents, see Blume et al. (2010) . 
5 Malmendier and Nagel (2016) find evidence in favor of a constant gain (approximately 0.02) using survey data on expectations across generations. 
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