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a b s t r a c t

Simultaneous seismic data denoising and reconstruction is a currently popular research subject in
modern reflection seismology. Traditional rank-reduction based 3D seismic data denoising and re-
construction algorithm will cause strong residual noise in the reconstructed data and thus affect the
following processing and interpretation tasks. In this paper, we propose an improved rank-reduction
method by modifying the truncated singular value decomposition (TSVD) formula used in the traditional
method. The proposed approach can help us obtain nearly perfect reconstruction performance even in
the case of low signal-to-noise ratio (SNR). The proposed algorithm is tested via one synthetic and field
data examples. Considering that seismic data interpolation and denoising source packages are seldom in
the public domain, we also provide a program template for the rank-reduction based simultaneous
denoising and reconstruction algorithm by providing an open-source Matlab package.

Published by Elsevier Ltd.

1. Introduction

Seismic data interpolation plays a fundamental role in seismic
data processing, which provides the regularly sampled seismic
data for the following workflows like high-resolution processing,
wave-equation migration, multiple suppression, amplitude-ver-
sus-offset (AVO) or amplitude-versus-azimuth (AVAZ) analysis,
and time-lapse studies (Chiu, 2014; Chen et al., 2015; Wang et al.,
2015; Gan et al., 2015a; Zhong et al., 2016; Zhang et al., 2016).
Three main types of interpolation approaches have been proposed
in the literature for handling with the interpolation problem. The
first type of approach is based on prediction (Spitz, 1991; Porsani,
1999). A prediction operator is designed from the low-frequency
components of seismic data and is applied to high-frequency
components. However, the predictive filtering method can only be
applied to regularly sampled seismic data. The second type is a
transformed domain method (Candès et al., 2006a; Chen et al.,
2014b; Gan et al., 2015b; Liu et al., 2015), which is based on
compressive sensing theory (Candès et al., 2006b; Donoho, 2006)
to achieve a successful recovery using highly incomplete available

data (Sacchi et al., 1998; Wang, 2003; Chen et al., 2014a). Com-
pressive sensing (CS) is a relatively new paradigm (Candès et al.,
2006b; Donoho, 2006; Donoho et al., 2006; Gan et al., 2016; Liu
et al., 2016) in signal processing that has recently received a lot of
attention. The theory indicates that the signal which is sparse
under some basis may still be recovered even though the number
of measurements is insufficient as required by the Shannon's cri-
terion. Naghizadeh and Sacchi (2007) propose a multistep auto-
regressive strategy which combines the first two types of methods
to reconstruct irregular seismic data. The third type is based on the
wave equation. This type of method utilizes the inherent con-
straint of the seismic data from wave equation to interpolate
seismic data, thus it depends on the known velocity model, which
also becomes its limitation (Canning and Gardner, 1996; Fomel,
2003). Recently, an increasing number of researchers have devel-
oped algorithms connecting the interpolation and deblending
(Berkhout, 2008) problems for the irregular sampled simulta-
neous-source data (Li et al., 2013), which provides new recipes for
conventional seismic interpolation problem.

Rank-reduction based seismic interpolation algorithms become
popular (Trickett and Burroughs, 2009; Oropeza and Sacchi, 2011)
in the past decade. The rank-reduction methods for seismic data
reconstruction can be divided into two main categories. The first
category applies rank reduction to multilevel block Hankel/
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Toeplitz matrices formed from the entries of the tensor. In other
words, multidimensional seismic data are rearranged into a block
Hankel or Toeplitz matrix, and a rank reduction algorithm is used
to improve the signal-to-noise ratio (SNR) and to reconstruct the
data. Such algorithm is usually named as the Cadzow method
(Trickett and Burroughs, 2009) or multichannel singular spectrum
analysis (MSSA) method (Oropeza and Sacchi, 2011). The other
category of rank-reduction methods encompasses techniques that
are based on dimensionality reduction of multi-linear arrays or
tensors. In this case, the multichannel seismic data is viewed as a
multi-linear array, and dimensionality reduction techniques are
directly applied to the multi-linear array (Gao et al., 2015). For
example, Kreimer and Sacchi (2012) adopt the high-order singular
value decomposition (HOSVD) to solve the 5D seismic data re-
construction problem in the frequency-space domain.

In this paper, we focus on simultaneous reconstruction and
denoising of 3D seismic data using the MSSA algorithm. MSSA is a
data-driven algorithm developed from research on alternative
tools for the analysis of multichannel time series, which is based
on the truncated singular value decomposition (TSVD) (Golub and
Loan, 1996) of the Hankel matrix. MSSA is also an extension of
singular spectrum analysis (SSA) (Vautard and Ghil, 1989), which is
used to analyze 1D time series. Missing traces and random noise
increase the rank of the appropriately constructed Hankel matrix
that is composed of seismic data at a given frequency slice. To
some extent, missing data in each frequency slice performs like
random noise at the first iteration of weighted projection onto
convex sets (POCS) like framework. Similar to other simultaneous
seismic data reconstruction and denoising approaches, MSSA
transforms the noisy data with missing traces into a domain where
signal and noise are mapped onto separate subspaces and then
removes the noise. Weighted POCS-like method, which is widely
used for seismic data reconstruction and first introduced to the
community of seismic exploration by Abma and Kabir (2006), is in
charge of the reconstruction procedure. Many numerical experi-
ments, however, indicate that the random noise cannot be com-
pletely removed using the conventional MSSA algorithm and there
still exist some reconstruction errors. The main reason is that the
traditional TSVD can only decompose the data into a noise sub-
space and a signal-plus-noise subspace. Huang et al. (2016) sug-
gest using damped MSSA (DMSSA) algorithm to better decompose
the data into the signal subspace and noise subspace for random
noise attenuation. In order to overcome the defect mentioned
above, we extend the DMSSA algorithm further to simultaneous
reconstruction and denoising of 3D seismic data. We first review
the theory of traditional MSSA algorithm, then we introduce the
proposed DMSSA based reconstruction and denoising framework.
Next, we introduce the main components in the Matlab package
and correlate the interior functions with the mathematical sym-
bols in the theory sections. Finally, one synthetic and one field
data examples are used to demonstrate the performance using the
proposed algorithm and the presented open-source Matlab pack-
age. The first synthetic example is reproducible from the provided
Matlab package. The field data example is, however, not in the
public domain, therefore we do not provide the segy file of the
field data in the package. But the field data example is just a
straightforward application of the Matlab package.

2. Rank reduction via MSSA

Consider a block of 3D data ( )t x yD , ,time of Nt by Nx by Ny

samples ( = ⋯ = ⋯ = ⋯ )t N x N y N1 , 1 , 1t x y . The MSSA (Oropeza and
Sacchi, 2011) operates on the data in the following way: first,
MSSA transforms ( )t x yD , ,time into ( )( = ⋯ )w x y w ND , , 1freq w of
complex values of the frequency domain. Each frequency slice of

the data, at a given frequency w0, can be represented by the fol-
lowing matrix:
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To avoid notational clutter we omit the argument w0. Second,
MSSA constructs a Hankel matrix for each row of D; the Hankel
matrix R i for row i of D is as follows:
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Then MSSA constructs a block Hankel matrix M for R i:
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The size of M is ×I J , = ( − + )( − + )I N m N n1 1x y , J¼mn. m and n
are predefined integers chosen such that the matrix R i and the
block Hankel matrix M are close to square matrices. The trans-
formation of the data matrix into a block Hankel matrix can be
represented in operator notation as follows:

= ( )M D, 4

where denotes the Hankelization operator.
In general, the block Hankel matrix M can be represented as:

= + ( )M S N, 5

where S and N denote the block Hankel matrix of signal and of
random noise, respectively.

We assume that M and N have full rank, ( )rank M ¼ ( ) =rank JN
and S has deficient rank, ( ) = <rank N JS . The singular value de-
composition (SVD) of M can be represented as:
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where Σ1
M ( ×N N) and Σ2

M ( ( − ) × ( − )I N J N ) are diagonal ma-
trices and contain, respectively, larger singular values and smaller
singular values. UM

1 ( ×I N), UM
2 ( × ( − )I I N ), VM

1 ( ×J N) and VM
2

( × ( − )J J N ) denote the associated matrices with singular vectors.
The symbol [·]H denotes the conjugate transpose of a matrix. In
general the signal is more energy-concentrated and correlative
than the random noise. Thus, the larger singular values and their
associated singular vectors represent the signal, while the smaller
values and their associated singular vectors represent the random
noise. We let Σ2

M be 0 to achieve the goal of attenuating random
noise while recovering the missing data during the first iteration
in reconstruction process as follows:

( )Σ˜ = ( )M U V . 7
M M M H

1 1 1

Eq. (7) is referred to as the TSVD, which is used in the conventional
MSSA approach.

3. 3D seismic data reconstruction via DMSSA

Nevertheless, M̃ is actually still contaminated with residual
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