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a b s t r a c t

In multiple-point simulation the image should be synthesized consistent with the given training image
and hard conditioning data. Existing sequential simulation methods usually lead to error accumulation
which is hardly manageable in future steps. Optimization-based methods are capable of handling in-
consistencies by iteratively refining the simulation grid. In this paper, the multiple-point stochastic si-
mulation problem is formulated in an optimization-based framework using a sparse model. Sparse model
allows each patch to be constructed as a superposition of a few atoms of a dictionary formed using
training patterns, leading to a significant increase in the variability of the patches. To control the crea-
tivity of the model, a local histogram matching method is proposed. Furthermore, effective solutions are
proposed for different issues arisen in multiple-point simulation. In order to handle hard conditioning
data a weighted matching pursuit method is developed in this paper. Moreover, a simple and efficient
thresholding method is developed which allows working with categorical variables. The experiments
show that the proposed method produces acceptable realizations in terms of pattern reproduction, in-
creases the variability of the realizations, and properly handles numerous conditioning data.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

More than two decades ago, Guardiano and Srivastava (1993)
have suggested going beyond bivariate moments to achieve more
realistic realizations when simulating environmental variables.
Training images (TIs) were introduced as direct models describing
the behavior of the field of interest. Since then, different multiple-
point statistics (MPS) methods have been proposed aiming at
constructing a simulation grid (SG) consistent with the TI and
satisfying hard conditioning data. The pattern reproduction cap-
ability, as one of the most important factors for comparing dif-
ferent MPS methods, implies that the SG is expected to be com-
posed of patterns similar to those of the TI. Meanwhile, MPS
methods are expected to produce diverse realizations to appro-
priately model the variability of the field (Tan et al., 2014).

Most existing MPS simulation methods are sequential and fill
the SG in a specific order. Pixel-based methods fill one pixel at
each simulation step and hence are too slow (Strebelle, 2002;
Mariethoz et al., 2010; Huang et al., 2013). Patch-based methods
fill one patch at a time to accelerate the simulation process, but
they have difficulties handling hard conditioning data in large
patches (Arpat and Caers, 2007; Honarkhah and Caers, 2010;
Mahmud et al., 2014; Abdollahifard, 2016). Error accumulation is
the most prominent problem encountered in sequential

simulation. Due to the limited spatial extent of data events, the
values could be synthesized inconsistently with far pixels. As the
simulation proceeds, the accumulation and propagation of such
errors lead to short-range unmanageable inconsistencies degrad-
ing the pattern reproduction capability (Abdollahifard, 2016).

If the SG is scanned in a raster order, a minimum overlap with
previously synthesized pixels is guaranteed, resulting in more
consistent realizations (Tahmasebi et al., 2014; Mahmud et al.,
2014). However, such methods are also prone to develop incon-
sistencies with conditioning data. Mahmud et al. (2014) attempted
to handle inconsistencies between subsequent patches by allow-
ing the border to be cut along an arbitrarily shaped curve which
minimizes the error. It seems easier to handle accumulated errors
in textureless areas and/or regions with fewer hard samples. Based
on this, Abdollahifard (2016) attempted to prevent inconsistencies
by informed selection of points on the scanning path, giving
priorities to pixels with more hard neighbors and more explicit
structures (stronger edges) and postponing the synthesis of tex-
tureless regions.

In sequential simulation methods, the synthesized values have
no chance for future refinement. This problem has been overcome
using optimization-based methods developed in the context of
texture synthesis in computer graphics (Kwatra et al., 2005; Kopf
et al., 2007; Peyré, 2009). Optimization-based methods avoid error
accumulation by iterative refinement of realizations using an EM-
like method. This is achieved at the expense of much further
computational effort needed to solve enormous number of tem-
plate matching problems. Mariethoz and Lefebvre (2014) have
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compared texture synthesis and MPS simulation concluding that
they have much in common. In fact, MPS is an extended condi-
tional texture synthesis that is applicable to two/three-dimen-
sional fields. Very recently, some researchers attempted to extend
the optimization-based methods to geological applications and
MPS simulation (Abdollahifard and Ahmadi, 2016; Yang et al.,
2016; Pourfard et al., 2016).

Instead of a TI, Abdollahifard and Ahmadi (2016) suggested to
employ an analytical edge model allowing the template matching
problem to be solved using a few steps of a gradient-descent op-
timization. However, the method is limited to image reconstruc-
tion using high sampling rates (≥1%). Yang et al. (2016) extended
the method of Kwatra et al. (2005) to MPS simulation by sug-
gesting solutions for handling conditional data and 3D simulation.
Yang et al. (2016) have employed the PatchMatch method of
Barnes et al. (2009) to accelerate the search process to some
extent.

Although the above-mentioned methods perform very well in
terms of pattern reproduction, they have difficulties in producing
diverse realizations. Yang et al. (2016) have increased the realiza-
tions diversity by enlarging the training data-base, leading to even
more computational complexity.

A diverse family of signal frames or image patches could easily
be reconstructed as a superposition of a limited number of atoms
of a well-chosen dictionary. Such frames or patches are said to
have sparse representation in the dictionary space. There exist
methods which allow learning a dictionary from a set of exemplar
images or signals (Aharon et al., 2006). Peyré (2009) has proposed
an optimization-based texture synthesis method whereby, instead
of searching a complete TI in the E-step, the image patches were
forced to have sparse representation in a dictionary learnt based
on training patterns.

Based on the method of Peyré (2009), in this paper a new MPS
simulation method is developed. Conditional simulation is ac-
complished by proposing a new sparse coding method named
Weighted Matching Pursuit (WMP), which is an extension for the
well-known matching pursuit method (Mallat and Zhang, 1993).

The paper is organized as follows. Section 2 introduces funda-
mental concepts regarding the sparse model and summarizes the
sparse texture synthesis method of Peyré (2009). In the next
section the proposed method is described. Section 4 examines the
capability of the proposed method in handling different problems
in MPS simulation. Finally we conclude in Section 5.

2. Sparse model

Over the past decade, sparse models are widely employed for
solving different problems in signal and image processing namely
image/signal retrieval, denoising, inpainting, and super-resolution,
just to name a few (Bruckstein et al., 2009). Let p̃ denote a

×n n patch whose vectorized form is denoted by ∈p n.
ϕ ϕΦ = [ … ] ∈ ×, , m

n m
1 denotes a dictionary which serves as a re-

presentation basis, where ϕi s are the columns of Φ with a unit
norm ( ϕ∥ ∥ =ℓ 1i 2

for = …i m1, , ), also known as dictionary atoms
( ≥ )m n . p could be represented in the dictionary as follows:
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where α is the representation of p in the representation domain.
The patch p is said to have a sparse representation in Φ if α
contains a few (say s) non-zero coefficients, or equivalently, p can
be constructed as a superposition of a few atoms of the dictionary.

2.1. Sparse coding

Given p, the problem of computing α is called sparse coding. In
general, this problem is an underdetermined one with infinite
number of possible solutions (note that ≥m n). To handle such a
problem a model is required to confine the solution space. The
sparsity model assumes that the patch has a sparse representation
in a well-chosen dictionary. Considering the sparsity assumption,
the problem can be formulated as follows:

α α αΦ= ∥ − ∥ ∥ ∥ ≤
( )α

ℓ ℓp sargmin subject to
2

2
2 0

where ∥·∥ℓa
denotes the ℓa norm:

∑α α∥ ∥ = | |
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and α∥ ∥ℓ0
is the number of non-zero coefficients of α. Approx-

imate algorithms are developed by either relaxing the problem
(replacing the ℓ0 normwith a ℓ1 norm) or solving the problem in a
greedy manner (Mallat and Zhang, 1993).

The greedy algorithms find one coefficient at a time. Matching
Pursuit (MP), as the most fundamental method in this category,
starts by finding the atom that best matches with the input patch.
To do so, the error is defined as follows:

ϕ( ) = ∥ − ∥ ( )pE i zmin 4z i

where z is a scalar variable. The value of z which minimizes the
above error function is obtained as the inner product of the dic-
tionary atom ϕi and the input patch p:

ϕ= 〈 〉 ( )⁎ pz , . 5i

ϕ⁎z i is the projection of p on ϕi. The index of the best match atom
is obtained as follows:

= ( )
( )

i E iargmin .
6i

0

Then, the i0th coefficient in α is updated as α = ⁎zi0
. After that, the

residual patch is computed as the difference between the original
patch and the projection vector. The algorithm continues by doing
the same procedure for the residual vector. The Matching Pursuit
algorithm is summarized in Table 1.

2.2. Sparse texture synthesis

Our method is founded on the texture synthesis algorithm of
Peyré (2009), which we rapidly summarize in the following. As
indicated before, the sparse modeling relies on the assumption

Table 1
Matching Pursuit algorithm.

1: ←r p, α ← ←0 k, 11 ,

2: while { }∥ ∥ > ϵ ≤r k s, do
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5:

ϕ
α

α

α
←

≠

+ 〈 〉 =

−

−

⎧
⎨⎪
⎩⎪ r

i i

i i

:

, :
i
k i

k

i
k

i

1
0

1
0

.
6: αΦ← −r p k

7: ← +k k 1,
8: end while

9: α α← −k 1
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