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a b s t r a c t

The Hashin–Shtrikman bounds on the elastic constants have been previously calculated for poly-
crystalline materials with crystallites having general elastic symmetry (triclinic crystallite symmetry).
However, the calculation of tighter bounds and the self-consistent estimates of these elastic constants
has remained unsolved. In this paper, a general theoretical expression for the self-consistent elastic
constants is formulated. An iterative method is used to solve the expression for the self-consistent es-
timates. Each iteration of the solution gives the next tighter set of bounds including the well-known
Voigt–Reuss and Hashin–Shtrikman bounds. Thus, all of the bounds on the elastic constants and the self-
consistent estimates for any crystallite symmetry are obtained in a single, computationally efficient
procedure. The bounds and self-consistent elastic constants are reported for several geophysical mate-
rials having crystallites of monoclinic and triclinic symmetries.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Information related to the elastic properties of subsurface
materials is obtained by relating seismic signatures to well-con-
trolled laboratory experiments (Jones et al., 2009). Often, the la-
boratory measurements are conducted on single crystals of ma-
terial, which have well known properties. Relating the single-
crystal measurements to processes involving a larger system, e.g.,
a polycrystal, containing similar crystallites requires modeling the
physical interaction of the crystallites and the resulting influence
on the larger system. The most commonly employed models for
polycrystals are based on statistically homogenizing the
crystallites.

Homogenization of the elastic properties extends back to Voigt
(1887) who considered the polycrystal's elastic constants to be
equal to the average of the crystallite's elastic constants over all
possible crystallite orientations. Inherent to Voigt's approach is the
assumption of uniform strain throughout the polycrystal. The as-
sumption of strain uniformity satisfies the kinematic compatibility
at grain boundary interfaces, while losing continuity of surface
traction or static compatibility. Reuss (1929) considered a uniform

stress assumption, which satisfies static compatibility while sa-
crificing kinematic compatibility. Hill (1952) proved, based on the
extreme assumptions of Voigt and Reuss, that the Voigt and Reuss
estimates of the polycrystal's elastic constants bound the true
elastic constants; i.e., the polycrystal's elastic constants that would
result if both kinematic and static compatibility at the grain
boundaries are satisfied. Hashin and Shtrikman (1962a, 1962b,
1963) developed new variational principles that allowed the next
set of bounds to be determined by seeking values of the bulk and
shear modulus that are near to regions of positive and negative
definiteness of the first-order deviation between the crystallite's
and polycrystal's elastic tensors. Watt et al. (1976) argued that the
Hashin–Shtrikman bounds are the tightest bounds achievable
without precise knowledge of the shapes, sizes, and correlations of
the crystallites. Thus, the Hashin–Shtrikman bounds have been
applied extensively in geophysical applications where it is difficult
to ascertain such microstructural features (Jones et al., 2009; Xu
and White, 1996; Berge et al., 1995; Vanorio et al., 2003). However,
bounds tighter than those of Hashin–Shtrikman are possible if the
microstructure is well characterized.

Watt and Peselnick (1980) and Watt (1986, 1979, 1980) con-
sidered the case of statistically isotropic and homogeneous poly-
crystals composed of uncorrelated, spherically shaped crystallites.
Later, Watt (1987) published a computational procedure for the
calculation of the Hashin–Shtrikman bounds for each of these
cases. Berryman (2005, 2011) provided a convenient procedure to
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calculate the Hashin–Shtrikman bounds for several cases of crys-
tallite symmetry. More recently, Brown (2015) has provided a
calculation scheme that includes the most general crystallite
symmetry (triclinic).

Following Brown (2015), a computational (MATLAB) procedure
is offered that calculates the bounds on the elastic constants of
statistically isotropic polycrystals composed of spherically-shaped
crystallites belonging to any of the crystallographic symmetry
classes. However, in this paper, all orders of bounds (including
those of Voigt–Reuss and Hashin–Shtrikman) are considered. The
calculation procedure stems from a theoretical expression of the
effective elastic constants that one would find when the kinematic
and static compatibility is satisfied throughout the polycrystal. An
iterative solution is sought where each iteration gives the next
tighter set of bounds. Convergence of the bounds produces esti-
mates of the well-known self-consistent elastic constants. Crystals
having additional symmetry can be treated as a limiting case of
triclinic symmetry by employing the symmetry relations on the
elastic constants (Brugger, 1965). The limiting case of cubic sym-
metry reproduces the formulas derived by Gairola and Kröner
(1981).

2. Theory

This section describes the analytical steps to define and reduce
the tensors needed in Eq. (7), which is the effective elastic moduli
tensor that is used in the iterative computational procedure.
Throughout the theory, the components of the fourth-rank tensors
use the Voigt index convention where the pairs of indices obtain
the following values: →11 1, →22 2, →33 3, →12 6, →13 5, and

→23 4. For example, the (i¼3, j¼3, k¼1, l¼2) component of the
elastic moduli tensor Cijkl is c36. Additionally, the standard sum-
mation convention over repeated indices from 1 to 3 is assumed.

Hooke's law for a linearly elastic polycrystalline medium is

σ = ϵ ( )
⁎ ⁎ ⁎C , 1ij ijkl kl

where ϵ⁎ is the infinitesimal strain tensor and ⁎Cijkl is the effective
fourth-rank elastic modulus tensor for the medium. Similarly,
Hooke's law for an individual spherical crystallite contained in the
polycrystal is

σ = ϵ ( )C , 2ij ijkl kl

where Cijkl is the elastic modulus of the crystallite. In general,
ϵ ≠ ϵ⁎

ij ij unless =⁎C Cijkl ijkl. The connection between the strain field of
the crystallite and polycrystal is

ϵ = ϵ ( )⁎H . 3ij ijkl kl

Hijkl is known as the concentration tensor given as (Lubarda, 2002;
Qu and Cherkaoui, 2006)
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with Eijkl being the Eshelby tensor (Eshelby, 1957) and Iijkl being
the identity tensor. The Eshelby tensor for a spherical crystallite
embedded in the polycrystal is
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where ⁎c12 and ⁎c44 are the effective Lamé and shear constants of the

polycrystal, respectively. The employment of this Eshelby tensor is
not overly restrictive because only the average grain shape of the
medium needs to be spherical. Alternate, more complicated forms
of the Eshelby tensor may be consulted for the case of a polycrystal
with (on the average) ellipsoidally shaped grains. ϵij is dependent
on the crystallographic orientation of the crystallite with respect
to the principal directions of ϵ⁎

ij. However, the volume average of ϵij
is equal to ϵ⁎

ij. Substituting into Eq. (3), while letting 〈〉 denote the
volume average ( 〈ϵ 〉 = ϵ⁎

ij ij), yields 〈 〉 =H Iijkl ijkl. Applying the or-
ientation average to Eq. (4) and rearranging then leads to ex-
pressions for the effective elastic moduli tensor,

( )= 〈 + 〉 − ( )
⁎ − −C C R R , 7ijkl ijkl ijkl ijkl

1 1

Evaluation of Eq. (7) is completed using the following steps. Find
Rijkl by observing that the tensor Eijkl has isotropic symmetry,
which permits a straightforward evaluation of −Eijkl

1. −Eijkl
1 also has

isotropic symmetry and can be written in terms of the isotropic
basis functions δ δij kl and Iijkl. Thus, the inner products over the
repeated indices m and n reduce to simple inner products between
the isotropic basis functions. Then, Rijkl can be written in the iso-
tropic form, δ δ= +R r r I2ijkl ij kl ijkl12 44 , where r12 and r44 are the only
independent components of Rijkl. Cijkl and Rijkl can be written with
respect to an alternative coordinate system through the use of
orthogonal transformation operators, ′ = α β γ δ αβγδC a a a a Cijkl i j k l and

′ = α β γ δ αβγδR a a a a Rijkl i j k l . Expanding over the repeated indices, and
applying the isotropic symmetry relations to Rijkl allows the sum

+C Rijkl ijkl to be constructed in the following manner:
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+C Rijkl ijkl in Eq. (8) has triclinic symmetry like Cijkl. Hence, the
inverse of +C Rijkl ijkl follows the same procedure as constructing

the inverse of Cijkl. The inverse ( )= +
−

L C Rijkl ijkl ijkl
1
is determined

by solving the overdetermined system of 81 equations for the 21
unknown components of Lijkl generated by

( )+ = ( )C R L I . 9ijmn ijmn mnkl ijkl

For example, the first equation follows from considering
= = = =i j k l 1 and summing over the repeated indices m and n.

Repeating this process for all combinations of i j k l, , , leads to the

81 equations. The average ( )〈 〉 = 〈 + 〉
−

L C Rijkl ijmn ijmn
1

is obtained by
equating the invariants of Lijkl and 〈 〉Lijkl and solving for the two
independent components of 〈 〉Lijkl , which are

( ) ( ) ( )ℓ = ℓ + ℓ + ℓ + ℓ + ℓ + ℓ − ℓ + ℓ + ℓ⁎ 10a15 4 2 ,12 11 22 33 12 13 23 44 55 66

( ) ( )ℓ = ℓ + ℓ + ℓ − ℓ + ℓ + ℓ + ℓ + ℓ + ℓ ( )⁎15 3 . 10b44 11 22 33 12 13 23 44 55 66

The evaluation of ( )〈 〉 = 〈 + 〉− − −L C Rijkl ijmn ijmn
1 1 1 is straightforward

because 〈 〉Lijkl has isotropic symmetry. At this point, all of the ne-
cessary tensors and operations contained in Eq. (7) are defined.
Solving Eq. (7) for ⁎Cijkl in closed form is not possible, except for the
special case of cubic crystallographic symmetry, because it is
transcendental with ⁎Cijkl appearing in the definitions of Rijkl and
Eijkl on the righthand side of Eq. (7). For polycrystals having crys-
tallites of cubic symmetry, the bulk modulus of the polycrystal is
equal to the bulk modulus of the crystallites, which leads to the
expression ( )= + −⁎ ⁎c c c c2 2 /312 11 12 44 and allows ⁎c12 and ⁎c44 to be
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