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a b s t r a c t

Assessing the change in uncertainty in reservoir production forecasts over field lifetime is rarely
undertaken because of the complexity of joining together the individual workflows. This becomes
particularly important in complex fields such as naturally fractured reservoirs. The impact of this
problem has been identified in previous and many solutions have been proposed but never implemented
on complex reservoir problems due to the computational cost of quantifying uncertainty and optimising
the reservoir development, specifically knowing how many and what kind of simulations to run.

This paper demonstrates a workflow that propagates uncertainty throughout field lifetime, and into
the decision making process by a combination of a metric-based approach, multi-objective optimisation
and Bayesian estimation of uncertainty. The workflow propagates uncertainty estimates from appraisal
into initial development optimisation, then updates uncertainty through history matching and finally
propagates it into late-life optimisation. The combination of techniques applied, namely the metric ap-
proach and multi-objective optimisation, help evaluate development options under uncertainty. This was
achieved with a significantly reduced number of flow simulations, such that the combined workflow is
computationally feasible to run for a real-field problem.

This workflow is applied to two synthetic naturally fractured reservoir (NFR) case studies in appraisal,
field development, history matching and mid-life EOR stages. The first is a simple sector model, while the
second is a more complex full field example based on a real life analogue. This study infers geological
uncertainty from an ensemble of models that are based on the carbonate Brazilian outcrop which are
propagated through the field lifetime, before and after the start of production, with the inclusion of
production data significantly collapsing the spread of P10-P90 in reservoir forecasts. The workflow links
uncertainty estimation with the appropriate optimisation at appraisal, development and reservoir
management stages to maximise oil recovery under uncertainty.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A key challenge in reservoir simulation is to know the appro-
priate number of models to run in order to make a good decision
given estimates of uncertainty in reservoir description. Much work
has been published on topics such as history matching, un-
certainty quantification, sensitivity analysis and optimisation to
tackle this challenge across 4 key stages for reservoir modelling &
development:

1. Reservoir appraisal: Sensitivity analysis is (commonly) used to
tell us the preproduction estimate of uncertainty.

2. Initial reservoir development planning: The best development

options are explored to maximise value given the uncertainty.
3. Reservoir model history matching: Production data is integrated

to improve the estimates of uncertainty.
4. Mid-late life Reservoir management: Additional mid/late life

development decisions are optimised given the uncertainty,
which has been updated from history matching.

Stages 1 and 3 are concerned with reservoir forecasting given
the uncertainty in the subsurface model. Stages 2 and 4 are
concerned with identifying new development opportunities to
maximise reservoir value given a range of different options, well
locations and other engineering trade-offs (e.g. maximising oil vs
minimising water). The stages represent a set of interconnected
ill-posed inverse problems, where many possible models/solutions
may exist given the data yet provide a range of forecasts.

Stochastic optimisation methods are often employed to solve
the inverse problem in reservoir simulation, and Bayesian
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formalism can be applied to the results of history matching to
estimate the uncertainty. Alternatively, Park et al. (2013) for in-
stance estimated uncertainty using kernel probability density es-
timation, a different formalism to the Bayesian way we employ in
this paper.

Uncertainty analysis is rarely however propagated from one
stage to another in a rigorous yet practical way which is the aim of
the workflow described in this paper. The aim is to create an im-
proved workflow that would fully couple stages 1–4 and propagate
the uncertainty through each stage of forecasting and optimisa-
tion. The reservoir development will be optimised across the full
range of possible reservoir descriptions, given the considered un-
certainty, to provide the best development option (or set of op-
tions to choose from). This could be described as optimisation
under uncertainty.

One of the most statistically robust approaches to estimating
the uncertainty in an inverse problem is to apply Monte Carlo
(MC) techniques to infer unknown distribution of the uncertain
model parameters. Bayesian approaches to uncertainty quantifi-
cation often use Markov Chain Monte Carlo (MCMC) to quantify
uncertainty. In all cases (particularly for MCMC as many samples
are rejected in the process of running the algorithm) Monte Carlo
methods are computationally expensive with many hundreds of
thousands or millions of iterations being required for convergence
in high dimensional problems.

Building a complete field lifetime workflow using these MCMC
techniques aiming to propagate the uncertainty through the
workflow would create an unmanageable computational cost,
unless surrogate models are used, however these trade-off speed
of solution against additional errors in uncertainty quantification.
The resulting combinatorial explosion in, for instance, finding the
optimal solution for drilling a new well given a large ensemble of
possible reservoir descriptions could easily lead to millions of
model runs – an unfeasibly large number for practical engineering
problems.

This work also aims to reduce the computational workload of
estimating and propagating uncertainties effectively to improve on
the industry norm. The reality for many practicing engineers, gi-
ven typical constraints on time and the computer power, is
something equivalent to the following steps:

� Simulations are run to assess the uncertainty at the initial stage,
when the uncertainty is theoretically at its greatest. These si-
mulations are more commonly developed as Min–Max ranges
rather than statistically significant confidence intervals.

� One single “most likely”/“base case” is carried forward for de-
velopment planning and optimisation at the initial stage.
Sometimes the min and max cases are tested against the opti-
mal development plan for the “base case”.

� The base case model is compared to actual production data and
history matched to the production data where possible. The
history matching process can often involve adding parameters
such as multipliers to the simulation model in order to add
flexibility to the model and make matching easier. Where the
base case cannot match, another model from the appraisal stage
or a newly generated model may be used to improve the history
match.

� The best history matched model is graduated to the next stage
and used in subsequent reservoir development decisions, his-
tory matching and optimisation phases, being the “most likely”
model.

The problem with the above approach is that at each stage, the
uncertainty is not estimated with any reasonable level of statistical
robustness (such as you would get from MCMC) and the un-
certainty estimates are not propagated into the optimisation

stages (Stages 2 and 4). Therefore, the “optimum” is only the op-
timal for the most likely reservoir description, rather than in re-
spect to the reservoir uncertainty.

In this paper we propose a solution to the problem of propa-
gating estimates of uncertainty throughout field lifetime with a
minimum number of simulation runs to provide accurate esti-
mates of uncertainty. This is attempted by developing a full field
lifetime workflow that:

� propagates the uncertainty from one stage to the next such that
we optimise decisions given the level of uncertainty and no
information is lost between each stage;

� calculates and updates statistical estimates of uncertainty at all
stages;

� is computationally efficient in minimising the number of sto-
chastic iterations required to assess uncertainty and optimise
the development.

The objective is to create a complete, field lifetime workflow for
uncertainty propagation that is efficient enough to be attempted on a
real field scenario. Recent papers, such as Shirangi and Durlofsky
(2015), demonstrate approaches for this type of (Closed-loop)
workflow where uncertainty analysis and optimisation are coupled
but required large numbers of iterations in to achieve a result
(220,000 flow simulations) thus reducing the simulation model re-
quirement would be an advantage for more complex field problems.
Maucec et al. (2011) used a Bayesian MCMC approach on a proxy
model to estimate geological uncertainties then MDS to dynamically
rank the realisations, however they did not carry these uncertainties
into an optimisation step thus well covered steps 1 and 3.

This paper describes a novel combination of existing techni-
ques to facilitate an optimisation under uncertainty process (car-
ried out both before and after history matching) to maximise the
value of the field throughout its lifetime.

The first section of this paper describes the set of techniques
employed in this new workflow that enables accurate estimation
of the uncertainty with a minimal cost in terms of simulation time.
This is a combination of three key technologies: Multi-Objective
optimisation, posterior NA-Bayes inference and model clustering/
classification using Multi-dimensional scaling. These techniques
are used in different combinations at each stage to best capture
the uncertainty while minimising the computational cost. There is
a brief description of each technique used.

The second section of the paper demonstrates variations of the
new workflow on 2 synthetic case study examples, (1) a simple
sector models and (2) a more complex fractured field example. The
second case study is a relatively complex but realistic (70,740 cells)
synthetic fractured field example developed using fracture analo-
gue data from Van Eijk (2014), to create a set of Discrete Fracture
Network (DFN) models, which were then upscaled to create re-
presentative simulation grids. The field is 3 phase, with a gas cap
and a relatively thin oil bearing section, making optimisation of
well placement a challenge given the quantified range of un-
certainty and model complexity.

To be consistent throughout the paper, a predefined set of
nomenclature is used to explain important terminology around
modelling. These terms are described as follows:

� Scenario – a high level geological idea that is to be tested. Dif-
ferent geological scenarios describe differences in the geological
conceptual model.

� Realisation – this is the outcome from a stochastic process
(which can be either stochastic simulation of the static model or
the models produced from stochastic optimisation (history
matching or optimisation). We can produce many realisations of
a scenario
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